
Requirements Engineering and Task Allocation

Adapted by Michael Haaf from
Chapters 4 & 23 of “Software

Engineering, 10th Edition” by Ian
Sommerville

Chapter 4 Requirements Engineering 130/10/2014

https://software-engineering-book.com/
https://software-engineering-book.com/
https://software-engineering-book.com/

Topics covered

✧ Functional and non-functional requirements

✧ Requirements engineering processes

✧ Requirements elicitation/specification/validation/change

✧ User stories

✧ Project planning

✧ Task allocation

Chapter 4 Requirements Engineering 230/10/2014

Requirements engineering

✧ Requirements Engineering is the process of
establishing the expected behavior of the software
system and the constraints under which it operates and
is developed.

✧ The system requirements are the descriptions of the
system services and constraints that are generated
during the requirements engineering process.

Chapter 4 Requirements Engineering 330/10/2014

Functional and non-functional requirements

Chapter 4 Requirements Engineering 430/10/2014

Functional and non-functional requirements

✧ Functional requirements
▪ Statements of services the system should provide, how the

system should react to particular inputs and how the system
should behave in particular situations.

▪ These correspond to user stories that your team will create to
describe the behavior of the software

✧ Non-functional requirements
▪ Often apply to the system as a whole rather than individual

features or services.
▪ Describe non-behavioral requirements of the software

Chapter 4 Requirements Engineering 530/10/2014

Functional requirements

✧ Describe functionality or system services.

✧ Depend on the type of software, expected users and the
type of system where the software is used.

✧ Functional user requirements may be high-level
statements of what the system should do.

✧ Functional system requirements should describe the
system services in detail.

Chapter 4 Requirements Engineering 630/10/2014

Example: functional requirements of
hypothetical Medical Clinic software system

✧ A user shall be able to search the appointments lists for
all clinics.

✧ The system shall generate each day, for each clinic, a list
of patients who are expected to attend appointments that
day.

✧ Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

Chapter 4 Requirements Engineering 730/10/2014

Requirements imprecision

✧ Problems arise when functional requirements are not
precisely stated.

✧ Ambiguous requirements may be interpreted in different
ways by developers and users.

✧ Consider the term ‘search’ in requirement 1
▪ User intention – search for a patient name across all

appointments in all clinics;
▪ Developer interpretation – search for a patient name in an

individual clinic. User chooses clinic then search.

Chapter 4 Requirements Engineering 830/10/2014

Requirements completeness and consistency

✧ In principle, requirements should be both complete and
consistent.

✧ Complete
▪ They should include descriptions of all facilities required.

✧ Consistent
▪ There should be no conflicts or contradictions in the descriptions

of the system facilities.

✧ In practice, because of system and environmental
complexity, it is impossible to produce a complete and
consistent requirements document.

Chapter 4 Requirements Engineering 930/10/2014

Non-functional requirements

✧ These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

✧ Process requirements may also be specified mandating
a particular IDE, programming language or development
method.

✧ Non-functional requirements may be more critical than
functional requirements. If these are not met, the system
may be useless.

✧ Refactoring, code-style, linting, and other changes
that do not change the functional behavior of the
software fit this category.

10

Requirements creation: Stories and scenarios

✧ Scenarios and user stories are real-life examples of how
a system can be used.

✧ Stories and scenarios are a description of how a system
may be used for a particular task.

✧ Because they are based on a practical situation,
stakeholders can relate to them and can comment on
their situation with respect to the story.

30/10/2014 Chapter 4 Requirements Engineering 11

Scenarios

✧ A structured form of user story

✧ Scenarios should include
▪ A description of the starting situation;
▪ A description of the normal flow of events;
▪ A description of what can go wrong;
▪ Information about other concurrent activities;
▪ A description of the state when the scenario finishes.

Chapter 4 Requirements Engineering 1230/10/2014

Requirements specification

Chapter 4 Requirements Engineering 1330/10/2014

Requirements specification

✧ The process of writing down the user and system
requirements in a requirements document.

✧ User requirements have to be understandable by
end-users and customers who do not have a technical
background.

Chapter 4 Requirements Engineering 1430/10/2014

Natural language specification

✧ Requirements are written as natural language sentences
supplemented by diagrams and tables.

✧ Used for writing requirements because it is expressive,
intuitive and universal. This means that the requirements
can be understood by users and customers.

Chapter 4 Requirements Engineering 1530/10/2014

Guidelines for writing requirements

✧ Invent a standard format and use it for all requirements.

✧ Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.

✧ Use text highlighting to identify key parts of the
requirement.

✧ Avoid the use of computer jargon.

✧ Include an explanation (rationale) of why a requirement
is necessary.

30/10/2014 Chapter 4 Requirements Engineering 16

Writing a User Story to specify a requirement

Consider the following when writing user stories:

● Definition of “done” — The story is generally “done” when the user can complete the outlined task, but make sure to
define what that is.

● Outline subtasks or tasks — Decide which specific steps need to be completed and who is responsible for each of them.

● User personas — For whom? If there are multiple end users, consider making multiple stories.

● Ordered Steps — Write a story for each step in a larger process.

● Listen to feedback — Talk to your users and capture the problem or need in their words. No need to guess at stories
when you can source them from your customers.

● Time — Time is a touchy subject. Many development teams avoid discussions of time altogether, relying instead on their
estimation frameworks. Since stories should be completable in one sprint, stories that might take weeks or months to
complete should be broken up into smaller stories or should be considered their own epic.

See https://www.atlassian.com/agile/project-management/user-stories for more detail.

17

https://www.atlassian.com/agile/project-management/user-stories

Writing a User Story to specify a requirement

“As a [persona], I [want to], [so that].”

Breaking this down:

● "As a [persona]": Who are we building this for? We’re not just after a job title, we’re after the persona of the person. Max.
Our team should have a shared understanding of who Max is. We’ve hopefully interviewed plenty of Max’s. We understand
how that person works, how they think and what they feel. We have empathy for Max.

● “Wants to”: Here we’re describing their intent — not the features they use. What is it they’re actually trying to achieve? This
statement should be implementation free — if you’re describing any part of the UI and not what the user goal is you're
missing the point.

● “So that”: how does their immediate desire to do something this fit into their bigger picture? What’s the overall benefit
they’re trying to achieve? What is the big problem that needs solving?

For example, user stories might look like:

● As Max, I want to invite my friends, so we can enjoy this service together.
● As Sascha, I want to organize my work, so I can feel more in control.
● As a manager, I want to be able to understand my colleagues progress, so I can better report our sucess and failures.

This structure is not required, but it is helpful for defining done. When that persona can capture their desired value, then the story
is complete.

See https://www.atlassian.com/agile/project-management/user-stories for more detail.

18

https://www.atlassian.com/agile/project-management/user-stories

Requirements change management

Chapter 4 Requirements Engineering 1930/10/2014

Key points

✧ Requirements for a software system set out what the
system should do and define constraints on its operation
and implementation.

✧ Functional requirements are statements of the services
that the system must provide or are descriptions of how
some computations must be carried out.

✧ Non-functional requirements often constrain the
system being developed and the development process
being used. They often relate to the emergent properties
of the system and therefore apply to the system as a
whole.

Chapter 4 Requirements Engineering 2030/10/2014

Key points

Chapter 4 Requirements Engineering 2130/10/2014

✧ The requirements engineering process is an iterative
process that includes requirements elicitation,
specification and validation.

✧ Requirements elicitation is an iterative process that can
be represented as a spiral of activities – requirements
discovery, requirements classification and organization,
requirements negotiation and requirements
documentation.

✧

Key points

✧ Requirements specification is the process of formally
documenting the user and system requirements and
creating a software requirements document.

✧ User stories and scenarios are tools for expressing
and documenting requirement specifications.

Chapter 4 Requirements Engineering 2230/10/2014

Project planning

✧ Project planning involves breaking down the work into
parts and assign these to project team members,
anticipate problems that might arise and prepare
tentative solutions to those problems.

✧ The project plan, which is created at the start of a
project, is used to communicate how the work will be
done to the project team and customers, and to help
assess progress on the project.

10/12/2014 Chapter 23 Project Planning 23

The project scheduling process

10/12/2014 Chapter 23 Project Planning 24

Project activities

✧ Project activities (tasks) are the basic planning element.
Each activity has:
▪ a duration in calendar days or months,
▪ an effort estimate, which shows the number of person-days or

person-months to complete the work,
▪ a deadline by which the activity should be complete,
▪ a defined end-point, which might be a document, the holding of a

review meeting, the successful execution of all tests, etc.

10/12/2014 Chapter 23 Project Planning 25

Milestones and deliverables

✧ Milestones are points in the schedule against which you
can assess progress, for example, the handover of the
system for testing.

✧ Deliverables are work products that are delivered to the
customer, e.g. a requirements document for the system.

10/12/2014 Chapter 23 Project Planning 26

Activity bar chart

10/12/2014 Chapter 23 Project Planning 27

Agile planning

✧ Agile methods of software development are iterative
approaches where the software is developed and
delivered to customers in increments.

✧ Unlike plan-driven approaches, the functionality of these
increments is not planned in advance but is decided
during the development.
▪ The decision on what to include in an increment depends on

progress and on the customer’s priorities.

✧ The customer’s priorities and requirements change so it
makes sense to have a flexible plan that can
accommodate these changes.

10/12/2014 Chapter 23 Project Planning 28

Story-based planning

✧ The planning game is based on creating user stories that reflect
the features that should be included in the system.

✧ The project team read and discuss the stories and rank them in
order of the amount of time they think it will take to implement the
story.

✧ Stories are assigned ‘effort points’ reflecting their size and difficulty
of implementation

✧ The number of effort points implemented per day is measured giving
an estimate of the team’s ‘velocity’

✧ This allows the total effort required to implement the system to be
estimated

10/12/2014 Chapter 23 Project Planning 29

The planning game

10/12/2014 Chapter 23 Project Planning 30

Release and iteration planning

✧ Release planning involves selecting and refining the
stories that will reflect the features to be implemented in
a release of a system and the order in which the stories
should be implemented.

✧ Stories to be implemented in each iteration are chosen,
with the number of stories reflecting the time to deliver
an iteration (usually 2 or 3 weeks).

✧ The team’s velocity is used to guide the choice of stories
so that they can be delivered within an iteration.

10/12/2014 Chapter 23 Project Planning 31

Task allocation

✧ During the task planning stage, the developers break
down stories into development tasks.
▪ A development task should take 4–16 hours.
▪ All of the tasks that must be completed to implement all of the

stories in that iteration are listed.
▪ The individual developers then sign up for the specific tasks that

they will implement.

✧ Benefits of this approach:
▪ The whole team gets an overview of the tasks to be completed in

an iteration.
▪ Developers have a sense of ownership in these tasks and this is

likely to motivate them to complete the task.

10/12/2014 Chapter 23 Project Planning 32

Software delivery

✧ A software increment is always delivered at the end of
each project iteration.

✧ If the features to be included in the increment cannot be
completed in the time allowed, the scope of the work is
reduced.

✧ The delivery schedule is never extended.

10/12/2014 Chapter 23 Project Planning 33

