
Application Development Process

Adapted by Michael Haaf from Ch 1-5 
of “Software Engineering, 10th 

Edition” by Ian Sommerville

1

https://software-engineering-book.com/
https://software-engineering-book.com/


Topics covered

✧ Application Development Process

✧ Agile methods

✧ Agile development techniques

✧ Agile project management

✧ Scaling agile methods

Chapter 3 Agile Software Development 230/10/2014



Application Development Process

✧ Specification, where the requirements and the con of 
the software that is to be produced are defined.

✧ Development, where the software is designed and 
programmed.

✧ Validation, where the software is checked to ensure that 
it meets requirements.

✧ Evolution, where the software is modified to reflect 
changing requirements.

Chapter 1 Introduction30/10/2014 3



Agile development

✧ The specification, design and implementation phases 
are interwoven (combined)

✧ The system is developed as a series of versions or 
increments

✧ Frequent delivery of new versions for evaluation

✧ Extensive tool support (e.g. automated testing tools) 
used to support development.

✧ Minimal documentation – focus on working code

Chapter 3 Agile Software Development 430/10/2014



Plan-driven and agile development

Chapter 3 Agile Software Development 530/10/2014



Plan-driven and agile development

✧ Plan-driven development
▪ A plan-driven approach to software engineering is based around 

separate development stages with the outputs to be produced at 
each of these stages planned in advance.

▪ Iteration occurs within activities. 

✧ Agile development
▪ Specification, design, implementation and testing are 

inter-leaved and the outputs from the development process are 
decided through a process of negotiation during the software 
development process.

Chapter 3 Agile Software Development 630/10/2014



Agile methods

Chapter 3 Agile Software Development 730/10/2014



Agile methods

✧ Dissatisfaction with the overheads involved in software 
design methods of the 1980s and 1990s led to the 
creation of agile methods. These methods:
▪ Focus on the code rather than the design
▪ Are based on an iterative approach to software development
▪ Are intended to deliver working software quickly and evolve this 

quickly to meet changing requirements.

✧ The aim of agile methods is to reduce overheads in the 
software process (e.g. by limiting documentation) and to 
be able to respond quickly to changing requirements 
without excessive rework.

Chapter 3 Agile Software Development 830/10/2014



Extreme programming

✧ A very influential agile method, developed in the late 
1990s, that introduced a range of agile development 
techniques.

✧ Extreme Programming (XP) takes an ‘extreme’ approach 
to iterative development. 
▪ New versions may be built several times per day;
▪ Increments are delivered to customers every 2 weeks;
▪ All tests must be run for every build and the build is only 

accepted if tests run successfully.

Chapter 3 Agile Software Development 930/10/2014



The Extreme Programming release cycle 

Chapter 3 Agile Software Development 1030/10/2014



Extreme programming practices (a) 

Chapter 3 Agile Software Development 11

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be 
included in a release are determined by the time available and 
their relative priority. The developers break these stories into 
development ‘Tasks’. See Figures 3.5 and 3.6.

Small releases The minimal useful set of functionality that provides business 
value is developed first. Releases of the system are frequent 
and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements 
and no more.

Test-first development An automated unit test framework is used to write tests for a new 
piece of functionality before that functionality itself is 
implemented.

Refactoring All developers are expected to refactor the code continuously as 
soon as possible code improvements are found. This keeps the 
code simple and maintainable.

30/10/2014



Extreme programming practices (b)

Chapter 3 Agile Software Development 12

Pair programming Developers work in pairs, checking each other’s work and 
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that 
no islands of expertise develop and all the developers take 
responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into 
the whole system. After any such integration, all the unit tests in 
the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as 
the net effect is often to reduce code quality and medium term 
productivity

30/10/2014



XP and agile principles

✧ Incremental development is supported through small, 
frequent system releases.

✧ Pair programming, collective ownership and a process 
that avoids long working hours.

✧ Change supported through regular system releases.

✧ Maintaining simplicity through constant refactoring of 
code.

Chapter 3 Agile Software Development 1330/10/2014



Influential XP practices

✧ Extreme programming has a technical focus and is not 
easy to integrate with management practice in most 
organizations.

✧ Consequently, while agile development uses practices 
from XP, the method as originally defined is not widely 
used.

✧ Key practices
▪ User stories for specification
▪ Refactoring
▪ Test-first development
▪ Pair programming

Chapter 3 Agile Software Development 1430/10/2014



User stories for requirements

✧ In XP, a customer or user is part of the XP team and is 
responsible for making decisions on requirements.

✧ User requirements are expressed as user stories or 
scenarios.

✧ These are written on cards and the development team 
break them down into implementation tasks. These tasks 
are the basis of schedule and cost estimates.

✧ The customer chooses the stories for inclusion in the 
next release based on their priorities and the schedule 
estimates.

Chapter 3 Agile Software Development 1530/10/2014



Refactoring

✧ Conventional wisdom in software engineering is to 
design for change. It is worth spending time and effort 
anticipating changes as this reduces costs later in the life 
cycle.

✧ XP, however, maintains that this is not worthwhile as 
changes cannot be reliably anticipated.

✧ Rather, it proposes constant code improvement 
(refactoring) to make changes easier when they have to 
be implemented.

Chapter 3 Agile Software Development 1630/10/2014



Refactoring

✧ Programming team look for possible software 
improvements and make these improvements even 
where there is no immediate need for them.

✧ This improves the understandability of the software and 
so reduces the need for documentation.

✧ Changes are easier to make because the code is 
well-structured and clear.

✧ However, some changes requires architecture 
refactoring and this is much more expensive.

Chapter 3 Agile Software Development 1730/10/2014



Examples of refactoring

✧ Re-organization of a class hierarchy to remove duplicate 
code.

✧ Tidying up and renaming attributes and methods to make 
them easier to understand.

✧ The replacement of inline code with calls to methods that 
have been included in a program library.

Chapter 3 Agile Software Development 1830/10/2014



Pair programming

✧ Pair programming involves programmers working in 
pairs, developing code together.

✧ This helps develop common ownership of code and 
spreads knowledge across the team.

✧ It serves as an informal review process as each line of 
code is looked at by more than 1 person.

✧ It encourages refactoring as the whole team can benefit 
from improving the system code.

Chapter 3 Agile Software Development 1930/10/2014



Pair programming

✧ In pair programming, programmers sit together at the 
same computer to develop the software.

✧ Pairs are created dynamically so that all team members 
work with each other during the development process.

✧ The sharing of knowledge that happens during pair 
programming is very important as it reduces the overall 
risks to a project when team members leave.

✧ Pair programming is not necessarily inefficient and there 
is some evidence that suggests that a pair working 
together is more efficient than 2 programmers working 
separately. 

Chapter 3 Agile Software Development 2030/10/2014



Test-first development

✧ Testing is central to XP and XP has developed an 
approach where the program is tested after every 
change has been made.

✧ XP testing features:
▪ Test-first development.
▪ Incremental test development from scenarios.
▪ User involvement in test development and validation.
▪ Automated test harnesses are used to run all component tests 

each time that a new release is built.

Chapter 3 Agile Software Development 2130/10/2014



Test-driven development

✧ Writing tests before code clarifies the requirements to be 
implemented.

✧ Tests are written as programs rather than data so that 
they can be executed automatically. The test includes a 
check that it has executed correctly.
▪ Usually relies on a testing framework such as Junit.

✧ All previous and new tests are run automatically when 
new functionality is added, thus checking that the new 
functionality has not introduced errors.

Chapter 3 Agile Software Development 2230/10/2014



Scrum sprint cycle

Chapter 3 Agile Software Development 2330/10/2014



Scrum benefits

✧ The product is broken down into a set of manageable 
and understandable chunks.

✧ Unstable requirements do not hold up progress.

✧ The whole team have visibility of everything and 
consequently team communication is improved.

✧ Customers see on-time delivery of increments and gain 
feedback on how the product works.

✧ Trust between customers and developers is established 
and a positive culture is created in which everyone 
expects the project to succeed.

Chapter 3 Agile Software Development 2430/10/2014


