
420-5A6-AB
Instructor: Talib Hussain

Day 5: Kotlin, CI/CD

Application
Development II

Objectives

• Finish Exercise on Companion Objects and Extension Functions
• Lambdas and Higher-Order Functions
• CI/CD with GitHub Actions
• (1 hour) Work on Assignment 1
• Handout Milestone 1

Try It! (Companion Objects and
Extensions)
• https://developer.android.com/codelabs/basic-android-kotlin-compose-g

enerics#3
• #5, 6, and 7

• If finished early, work on Assignment #1

https://developer.android.com/codelabs/basic-android-kotlin-compose-generics#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-generics#3

Using Lambdas…

• In assignment #1, you are asked to provide a lambda to the constructor of a class, and use that lambda
within the insert function to determine order for insertion.

• Visit the following link to get a rough idea of what such a lambda might look like
• https://alvinalexander.com/source-code-kotlin-sortedWith-syntax-lambda-examples/

• In that link, we are passing a lambda to a built-in function on lists called sortedWith.
• In the assignment you will not be using sortedWith(), but will be implementing an insert function that may

behave internally in an analogous way

• The lambda will not be passed in as a parameter to the insert function, but instead will be stored as a
field in the class and access by the insert function

• Your lambda does not need to be a Comparator, and can just accept a general lambda

• Your lambda does need to behave similarly to a comparator.

• You can use a when statement in a very analogous way.

• Your lambda should operate on Person objects

• The link shows different types of lambdas analogous to the 3 expected of you in the assignment.

https://alvinalexander.com/source-code-kotlin-sortedWith-syntax-lambda-examples/

Higher-Order Functions
• A higher-order function is a function that takes functions as parameters, or returns a function.

• https://kotlinlang.org/docs/lambdas.html#function-literals-with-receiver

• Common higher-order functions that can be used on collections include
• .forEach(), .map(), .filter(), .groupBy(), .fold(), .sortedBy()

• You can also define your own higher-order functions that accept functions or lambdas as parameter.

• When defining a function as a parameter, you need to specify the input and output types of that parameter.
• i.e., As with normal parameters, the "type" of a function-parameter must be specified.
• This means that the function-parameter's "signature" appears after the parameter name using the syntax : (param type list) -> return type
• The function represented by the function parameter can then be invoked simply by calling it by the parameter's name (and passing it the appropriate parameters)

fun higherFunc(funcParam: (Int, Int) -> Int) { // accepting a two-argument function as parameter

 var result = funcParam(2,4) // invokes the function funcParam by passing parameters 2 and 4 to it

 println("The sum of two numbers is: $result")

}

fun higherFunc(funcParam: () -> Unit) { // accepting a no-argument function as parameter

 funcParam() //invokes the function funcParam

}

• Note that the actual value passed when invoking the function-parameter is determined by the higher-order function.

• For more details on passing lambdas as parameters, see this link
• https://www.geeksforgeeks.org/kotlin-higher-order-functions/

https://kotlinlang.org/docs/lambdas.html#function-literals-with-receiver
https://www.geeksforgeeks.org/kotlin-higher-order-functions/

Calling a Higher-Order Function

• When calling a higher-order function, we can pass an existing named function as a parameter using the ::
notation

higherFunc(::existingFunction)

• where, for example,
fun existingFunction(a:Int) : Int {
 return a+1
}

fun higherFunc(funcParam: (Int) -> Int) { // accepting one-argument function as parameter
 var result = funcParam(2) // invokes the function funcParam by passing parameter 2 to it
 println("The sum of two numbers is: $result")
}

• Since a lambda expression is just an anonymous function, it can also be passed as a parameter.
var lambda = {a: Int -> a + 2 }
higherFunc(lambda)

• We can also pass the lambda "in-line"
higherFunc(funcParam = {a: Int -> a + 3 })
higherFunc({a: Int -> a + 4 })

Try It! Higher-order functions

• Do the following codelab to get more experience using lambdas and
higher-order functions in Kotlin
• https://developer.android.com/codelabs/basic-android-kotlin-compose-highe

r-order-functions#0

https://developer.android.com/codelabs/basic-android-kotlin-compose-higher-order-functions#0
https://developer.android.com/codelabs/basic-android-kotlin-compose-higher-order-functions#0

Continuous Integration/Continuous
Delivery
(CI/CD) using GitHub
• Use GitHub Actions to define workflows

• A workflow is a configurable automated process that will run one or more jobs
• Workflows may run sequentially or in parallel
• Workflows are generally triggered by events, such as a pull request being created, or a new tag being pushed
• Workflows may also be triggered manually at any time.

• GitHub Actions uses YAML script files for each workflow
• The YAML file specifies a set of jobs to run when certain triggers occur
• E.g., build the project every time something is pushed to main.

• This is useful to make sure that no one "breaks the build" (i.e., commits something that doesn't compile).

• https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle
• Indentation matters…

• Other links:
• https://docs.gradle.org/current/userguide/github-actions.html
• https://blog.logrocket.com/android-ci-cd-using-github-actions/

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle
https://docs.gradle.org/current/userguide/github-actions.html
https://blog.logrocket.com/android-ci-cd-using-github-actions/

Now, let's make it actually build…!
• https://docs.gradle.org/current/userguide/github-actions.html#sec:configure_github_actions

• https://github.com/gradle/gradle-build-action

• https://github.com/gradle/wrapper-validation-action

• Replace the "steps" section of your yaml file with the following.

 steps:

 # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it

 - uses: actions/checkout@v3

 # We need version 17 or higher for our app

 - name: Set up JDK 17

 uses: actions/setup-java@v3

 with:

 java-version: 17

 distribution: 'temurin'

 cache: gradle

 - name: Validate Gradle wrapper

 uses: gradle/wrapper-validation-action@v1

 - name: Grant execute permission for gradlew

 run: chmod +x gradlew

 - name: Setup Gradle

 uses: gradle/gradle-build-action@v2

 - name: Run build with Gradle Wrapper

 run: ./gradlew build

https://docs.gradle.org/current/userguide/github-actions.html#sec:configure_github_actions
https://github.com/gradle/gradle-build-action
https://github.com/gradle/wrapper-validation-action

Build Error?

• Now, make a simple syntax error in your
MainActivity.kt so that it can't compile properly
• Commit and push your changes (don't forget to

commit the yaml file changes too).
• Go to GitHub Actions and you should see a new

workflow being kicked off
• That build should fail. Look carefully and it should

give some indication of the error.

• With extra "Echo" messages for more clarity.
 # Steps represent a sequence of tasks that will be executed as part of the job
 steps:
 - run: echo "The job was automatically triggered by a ${{ github.event_name }} event."
 - run: echo "This job is running on a ${{ runner.os }} server hosted by GitHub!"
 # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
 - uses: actions/checkout@v3
 - run: echo "The ${{ github.repository }} repository has been cloned."

 - run: echo "Setting up JDK"
 # We need version 17 or higher for our app
 - name: Set up JDK 17
 uses: actions/setup-java@v3
 with:
 java-version: 17
 distribution: 'temurin'
 cache: gradle
 - run: echo "The workflow is now ready to test your code."

 - name: Validate Gradle wrapper
 uses: gradle/wrapper-validation-action@v1
 - name: Grant execute permission for gradlew
 run: chmod +x gradlew

 - run: echo "Building Debug APK."
 - name: Setup Gradle
 uses: gradle/gradle-build-action@v2

 - name: Run build with Gradle Wrapper
 run: ./gradlew build
 - run: echo "Build status report=${{ job.status }}."

Run Unit Tests

• A key reason to use CI/CD is to make sure that your pushed code is
always in a good state.
• Passing all the unit tests is an important part of this.
• We have one unit test in our project (created as part of the project template)

app/src/test/…ExampleUnitTest.java

• Let's define a 2nd job in our workflow that will run our unit tests
• https://docs.github.com/en/actions/using-jobs/using-jobs-in-a-workflow
• https://github.com/marketplace/actions/android-test-report-action

https://docs.github.com/en/actions/using-jobs/using-jobs-in-a-workflow
https://github.com/marketplace/actions/android-test-report-action

• Add the following at the end of the yaml file. The indentation of test: should match the indentation of build: earlier in the file.
 # The second job called "unit_tests"

 # It should run only after the build job succeeds

 unit_tests:

 needs: build

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 - name: Set up JDK 17

 uses: actions/setup-java@v3

 with:

 java-version: 17

 distribution: 'temurin'

 cache: gradle

 - name: Grant execute permission for gradlew

 run: chmod +x gradlew

 # Execute unit tests

 - name: Unit Test

 run: ./gradlew testDebugUnitTest

 - name: Android Test Report

 uses: asadmansr/android-test-report-action@v1.2.0

 if: ${{ always() }} # IMPORTANT: run Android Test Report regardless

• Commit and push the changes to the yaml file. This should kick off a
workflow comprised of two jobs

• When the text job is complete, look at the details in the Android Test
Report. It should show that 1 test was run and that none failed.

Instrumentation Test
Let's make sure it can run on
Android
• We are making a mobile app. It is important to know that the

program will load properly on an Android device.
• GitHub actions allows us to check that using an emulator.
• https://github.com/ReactiveCircus/android-emulator-runner

• The emulator can use hardware acceleration only on the macOS emulator.
Therefore, this job needs to run on a macOS runner while others can run on
Ubuntu runners.

https://github.com/ReactiveCircus/android-emulator-runner

• Add the following at the end of the yaml file

The third job called "android_tests"
 android_tests:
 needs: unit_tests
 runs-on: macos-latest
 steps:
 - run: echo "Starting Instrumentation Tests"
 - name: Checkout
 uses: actions/checkout@v3
 # Need JDK 17 and gradle 8.1 for the code to build properly in the emulator (8.1.0 leads to error here)
 - name: Set up JDK 17
 uses: actions/setup-java@v3
 with:
 java-version: 17
 distribution: 'temurin'
 cache: gradle

 - name: Gradle cache
 uses: gradle/gradle-build-action@v2
 with:
 gradle-version: 8.1

 - name: Grant execute permission for gradlew
 run: chmod +x gradlew

 - name: Use 8.1 wrapper
 run: ./gradlew wrapper --gradle-version=8.1
 - name: Instrumentation Tests
 uses: reactivecircus/android-emulator-runner@v2
 with:
 api-level: 29
 script: ./gradlew connectedCheck

May take many minutes to startup the emulator (e.g., 10+ minutes).
 Work on Assignment 1 or Milestone 1 while waiting.

Note:
• It takes a long time to start up the emulator, so may be worth experimenting with the caching described in:

• https://github.com/ReactiveCircus/android-emulator-runner
• android_tests:
• needs: unit_tests
• runs-on: macos-latest
• strategy:
• matrix:
• api-level: [29]
• steps:
• - name: checkout
• uses: actions/checkout@v3

• # Need JDK 17 and gradle 8.1 for the code to build properly in the emulator.
• # (8.1.0 leads to error here)
• - name: Set up JDK 17
• uses: actions/setup-java@v3
• with:
• java-version: 17
• distribution: 'temurin'
• cache: gradle

• - name: Gradle cache
• uses: gradle/gradle-build-action@v2
• with:
• gradle-version: 8.1

• - name: Grant execute permission for gradlew
• run: chmod +x gradlew

• - name: Use 8.1 wrapper
• run: ./gradlew wrapper --gradle-version=8.1

• - name: AVD cache
• uses: actions/cache@v3
• id: avd-cache
• with:
• path: |
• ~/.android/avd/*
• ~/.android/adb*
• key: avd-${{ matrix.api-level }}

• - name: create AVD and generate snapshot for caching
• if: steps.avd-cache.outputs.cache-hit != 'true'
• uses: reactivecircus/android-emulator-runner@v2
• with:
• api-level: ${{ matrix.api-level }}
• force-avd-creation: false
• emulator-options: -no-window -gpu swiftshader_indirect -noaudio -no-boot-anim -camera-back none
• disable-animations: false
• script: echo "Generated AVD snapshot for caching."

• - name: run tests
• uses: reactivecircus/android-emulator-runner@v2
• with:
• api-level: ${{ matrix.api-level }}
• force-avd-creation: false
• emulator-options: -no-snapshot-save -no-window -gpu swiftshader_indirect -noaudio -no-boot-anim -camera-back none
• disable-animations: true
• script: ./gradlew connectedCheck

https://github.com/ReactiveCircus/android-emulator-runner

Sneak Peak: Deployment for User
Testing
• Later in the course, we will investigate using GitHub Actions to actually deploy our

app so that test users can try it out.
• This requires using Firebase

• Storing secrets:
https://proandroiddev.com/create-android-release-using-github-actions-c052006f6b0b

• Firebase-GitHub integration: https://firebase.google.com/docs/hosting/github-integration
• Running the published app as a tester:

https://quickresource.quickseries.com/knowledge-base/installing-your-test-app-on-android-fireba
se/

• Not for this class, but you can also deploy to the Google Play store (but that is a more
complicated process and your app needs to go through approvals at Google first).
• https://dev.to/jforatier/build-test-and-deploy-your-android-application-with-github-actions-hh1

• Other misc links:
• https://www.kodeco.com/19407406-continuous-delivery-for-android-using-github-actions
• https://dustn.dev/post/2022-02-21-build-a-cicd-pipeline-using-github-actions/

https://proandroiddev.com/create-android-release-using-github-actions-c052006f6b0b
https://firebase.google.com/docs/hosting/github-integration
https://quickresource.quickseries.com/knowledge-base/installing-your-test-app-on-android-firebase/
https://quickresource.quickseries.com/knowledge-base/installing-your-test-app-on-android-firebase/
https://dev.to/jforatier/build-test-and-deploy-your-android-application-with-github-actions-hh1
https://www.kodeco.com/19407406-continuous-delivery-for-android-using-github-actions
https://dustn.dev/post/2022-02-21-build-a-cicd-pipeline-using-github-actions/

