
420-5A6-AB
Instructor: Talib Hussain

Day 24:
Firebase Auth

Application
Development II

Objectives

• Firebase Auth

Course Schedule
• Sep 7 – Assignment #1 due at midnight

• Sep 11 (Today) – Quiz Kahoot #1 on Kotlin

• Sep 13 (Wednesday) – Milestone #1 due before class. Presentations in class.

• Sep 24 – Assignment #2 due midnight

• Sep 27 – Quiz Kahoot #2 on Compose [Week 6]

• Sep 27 – Assignment #3a WBS+LOEs due by midnight

• Sep 29 – Assignment #3b Git/local setup confirmation due by midnight

• Oct 5 – Assignment #3c due midnight

• Oct 7 – Sprint 1: Milestone #2a due midnight (Initial project setup)

• Oct 12 – Quiz #3 on State/Event Handling

• Oct 16 – Quiz Kahoot #4 on Navigation/Routing

• Oct 18 – Sprint 2: Milestone #2b due before class (Project design and Risk Management Plan). Presentations in class.

• Oct 26 – Quiz Kahoot #5 on Coroutines/Flow/Storage [Week 10]

• Nov 1: Sprint 3 ends; In-class review with Teacher

• Nov 6 – Quiz Kahoot #6 on Authentication/TBD

• (Tues Nov 14 is Monday schedule)

• Nov 15: Sprint 4 ends; Milestone #3 due (Project design update, Preliminary code/demo)

• Nov 29: Sprint 5 ends; In-class review with Teacher

• Dec 6 [Last class]: Final project due and presentations.

Note: Assignment #4
needs to be fit in here.
Likely will make it
support Milestone 3.

Kahoot Quiz Instructions + Sign-Up
• Each group will prepare one quiz (The two groups of 2 will collaborate on 1 quiz)

• Each quiz must have at least 9 questions (12 for two-group case)
• This is a Group activity and each team member is responsible for creating 3 questions. This includes the text and the image choice.

• Total quiz length target is 5 to 10 minutes (12 min for group of 4). Questions should offer at least 30 seconds to respond even if
they are simple, and no more than 2 minutes even if they require some thought.

• Exception: You may include 1 "Challenge" question that requires using the IDE or searching on the Internet. This can take up to 5 minutes and must be the last question.
• Note: For simple questions, 30 seconds may seem long, but we want to be fair to any students who need a bit more time.

• The group that prepares the quiz must send me the quiz. Use the "share" feature in Kahoot and share it with user talibhussain129.
• Note: must be 129, not another user with my name…
• We will run the kahoot from my account.

• In MIO or Teams, you must also send me a summary indicating who was responsible for each question (i.e., who came up with the question)
• It is ok if 1 person takes the main responsibility for entering the questions in Kahoot, but the person who created each question is credited.
• Alternatively, you can put the name of the person who created the question at the end of the question itself… but then everyone will know!!

• Sep 11 – Quiz Kahoot #1 on Kotlin
• Group = Lauren, Will C., Griffin

• Sep 25 – Quiz Kahoot #2 on Compose
• Group = Makena, Jordyn, Kui Hua, Zakari

• Oct 12 – Quiz #3 on State/Event Handling
• Group = Cindy, Jean-Rose, Anjeli

• Oct 16 – Quiz Kahoot #4 on Navigation/Routing
• Group = Jose, Aidan, Nitpreet

• Oct 26 – Quiz Kahoot #5 on Coroutines/Flow/Storage
• Group = Ryan, Brandon, Will D.

• Nov 6 – Quiz Kahoot #6 on Authentication/TBD
• Group = Robert, Seth, Phil

Firebase Authentication

• Use the official docs to setup your basic configuration:
• https://firebase.google.com/docs/auth/android/firebaseui

• These other links don't really have a solutions that are easy to understand and get working. But,
you can consult them for ideas.
• Simple walkthrough for setting up and using Firebase Authentication.

• https://www.composables.com/tutorials/firebase-auth

• A more complex tutorial from Google. Nte: Uses Hilt for dependency injection
• https://developers.google.com/learn/pathways/firebase-android-jetpack

• Steps 2 – 4 are most relevant
• https://firebase.blog/posts/2022/04/building-an-app-android-jetpack-compose-firebase
• https://firebase.blog/posts/2022/05/adding-firebase-auth-to-jetpack-compose-app
• https://firebase.blog/posts/2022/07/adding-cloud-firestore-to-jetpack-compose-app

• This codelab skips some details since it provides some code. But, may be a useful reference (up to step 4).
• https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#3

https://firebase.google.com/docs/auth/android/firebaseui
https://www.composables.com/tutorials/firebase-auth
https://developers.google.com/learn/pathways/firebase-android-jetpack
https://firebase.blog/posts/2022/04/building-an-app-android-jetpack-compose-firebase
https://firebase.blog/posts/2022/05/adding-firebase-auth-to-jetpack-compose-app
https://firebase.blog/posts/2022/07/adding-cloud-firestore-to-jetpack-compose-app
https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#3

Add Project in Firebase Console

• https://console.firebase.google.com/u/0/

Click on Android button

• Register App
• Download google-

services.json
• Put it in the app folder

of your project

Root level Gradle Change

Module Level Gradle Change

Setup on Firebase online

• Go to your
console.firebase.google.com
and go to the authentication
page in the build menu on the
left
• Click Get Started

• Choose the
email/password
provider and enable it.

• Teacher code with successful sign in with Email/Password is in
firebaseAuth branch

Auth with email/password

• 1. Create a User class that stores user email
• 2. Create AuthRepository interface

• currentUser(), signUp(), signIn(), signOut(), delete()
• currentUser as a function (not a state variable) so that we have a consistent contract

• 3. Create AuthRepositoryFirebase that implements the interface
• 4. Create an AuthViewModel that accepts an AuthRepository

• To prevent the composable functions from knowing anything about the business logic, we are going to
call the Firebase Authentication API methods from the ViewModels.

• 5. Perform manual dependency injection
• Add authRepository variable in AppModule
• Create AuthViewModelFactory that calls Firebase.auth to instantiate

• 6. Create a composable LoginScreen that will use the ViewModel (with the factory)

Generalized Interface
• The approach below provides us with a repository that is not dependent on any particular database

implementation we decide to use
• User is our own class. Unlike, for example, FirebaseUser which is what some Firebase operations return.

data class User(var email: String)

interface AuthRepository {
 // Return a StateFlow so that the composable can always update when
 // the current authorized user status changes for any reason
 fun currentUser() : StateFlow<User?>

 suspend fun signUp(email: String, password: String): Boolean

 suspend fun signIn(email: String, password: String): Boolean

 fun signOut()

 suspend fun delete()
}

AuthRepositoryFirebase

• Need to inject the FirebaseAuth object
• Need the initialize a flow when the repository is created so that it listens to all changes on a

MutableStateFlow.
• Note that we need to convert FirebaseUser to User inside our flow since we want to pass a flow of User

to our viewModel
• i.e., the viewModel should never know about FirebaseUser

class AuthRepositoryFirebase(private val auth: FirebaseAuth) : AuthRepository {
 private val currentUserStateFlow = MutableStateFlow(auth.currentUser?.toUser())

 init {
 auth.addAuthStateListener { firebaseAuth ->
 currentUserStateFlow.value = firebaseAuth.currentUser?.toUser()
 }
 }
 override fun currentUser(): StateFlow<User?> {
 return currentUserStateFlow
 }

Helper function to convert from
FirebaseUser to User
• We can put this in our AuthRepositoryFirebase as a private function since no

other parts of the program ever need to use it.

 /** Convert from FirebaseUser to User */
 private fun FirebaseUser?.toUser(): User? {
 return this?.let {
 if (it.email==null) null else
 User(
 email = it.email!!,
)
 }
 }

Main operations
override suspend fun signUp(email: String, password: String): Boolean {

 return try {

 auth.createUserWithEmailAndPassword(email, password).await()

 return true;

 } catch (e: Exception) {

 return false;

 }

 }

 override suspend fun signIn(email: String, password: String): Boolean {

 return try {

 auth.signInWithEmailAndPassword(email, password).await()

 return true;

 } catch (e: Exception) {

 return false;

 }

 }

 override fun signOut() {

 return auth.signOut()

 }

 override suspend fun delete() {

 if (auth.currentUser != null) {

 auth.currentUser!!.delete()

 }

 }

AuthViewModel
class AuthViewModel(private val authRepository: AuthRepository) : ViewModel() {

 // Return a StateFlow so that the composable can always update

 // based when the value changes

 fun currentUser(): StateFlow<User?> {

 return authRepository.currentUser()

 }

 fun signUp(email: String, password: String) {

 viewModelScope.launch {

 authRepository.signUp(email, password)

 }

 }

 fun signIn(email: String, password: String) {

 viewModelScope.launch {

 authRepository.signIn(email, password)

 }

 }

 fun signOut() {

 authRepository.signOut()

 }

 fun delete() {

 viewModelScope.launch {

 authRepository.delete()

 }

 }

}

AuthViewModelFactory

/* ViewModel Factory that will create our view model by injecting the
 authRepository from the module.
 */
class AuthViewModelFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass: Class<T>): T {
 return AuthViewModel(MyApp.appModule.authRepository) as T
 }
}

Manual Dependency Injection

class AppModule(

 private val appContext: Context

) {

 /* Create appropriate repository (backed by a DataStore) on first use.

 Only one copy will be created during lifetime of the application. */

 val profileRepository : ProfileRepository by lazy {

 ProfileRepositoryDataStore(appContext)

 }

 val authRepository : AuthRepository by lazy {

 AuthRepositoryFirebase(Firebase.auth) // inject Firebase auth

 }

}

AuthLoginScreen
@Composable

fun AuthLoginScreen(authViewModel: AuthViewModel =

 viewModel(factory= AuthViewModelFactory())

) {

 val userState = authViewModel.currentUser().collectAsState()

 Column {

 if (userState.value == null) {

 Text("Not logged in")

 Button(onClick = {

 authViewModel.signUp("myname@name.com", "Abcd1234!")

 }) {

 Text("Sign up via email")

 }

 Button(onClick = {

 authViewModel.signIn("myname@name.com", "Abcd1234!")

 }) {

 Text("Sign in via email")

 }

} else {

 if (userState.value==null)

 Text("Please sign in")

 else

 Text("Welcome ${userState.value!!.email}")

 Button(onClick = {

 authViewModel.signOut()

 }) {

 Text("Sign out")

 }

 Button(onClick = {

 authViewModel.delete()

 }) {

 Text("Delete account")

 }

 }

 }

}

Test It Out

• Try adding and removing different users and seeing what happens in
your Firebase console

Dispatchers
• By default, Kotlin will run your asynchronous routines in the main thread – the same one that your UI is running on

• It is considered best practice to inject dispatchers into your ViewModel

• A dispatcher will run suspend functions in a separate thread. There are 3 available dispatchers:
• Dispatchers.Main - Use this dispatcher to run a coroutine on the main Android thread. This should be used only for interacting with the UI and performing quick work. Examples include

calling suspend functions, running Android UI framework operations, and updating LiveData objects.

• Dispatchers.IO - This dispatcher is optimized to perform disk or network I/O outside of the main thread. Examples include using the Room component, reading from or writing to files, and
running any network operations.

• Dispatchers.Default - This dispatcher is optimized to perform CPU-intensive work outside of the main thread. Example use cases include sorting a list and parsing JSON.

• Easy to do – just pass a Dispatcher to the launch function
• Usually will use Dispatchers.IO to take work off the Main thread

viewModelScope.launch(Dispatchers.IO) {

 …

}

• Inside a suspend fun, you can also specify that a particular block of code will run on a different thread using withContext. E.g.,
// Dispatchers.Main

suspend fun get(url: String) =

 // Dispatchers.Main

 withContext(Dispatchers.IO) {

 // Dispatchers.IO

 /* perform blocking network IO here */

 }

 // Dispatchers.Main

• https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html#dispatchers-and-threads

• https://dev.to/theplebdev/android-notes-understanding-viewmodelscopelaunch-230f

• https://developer.android.com/kotlin/coroutines/coroutines-adv

• https://medium.com/androiddevelopers/coroutines-on-android-part-i-getting-the-background-3e0e54d20bb

https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html#dispatchers-and-threads
https://dev.to/theplebdev/android-notes-understanding-viewmodelscopelaunch-230f
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html#dispatchers-and-threads
https://medium.com/androiddevelopers/coroutines-on-android-part-i-getting-the-background-3e0e54d20bb

class AuthViewModel(private val authRepository: AuthRepository) : ViewModel() {

 // Return a StateFlow so that the composable can always update

 // based when the value changes

 fun currentUser(): StateFlow<User?> {

 return authRepository.currentUser()

 }

 fun signUp(email: String, password: String) {

 viewModelScope.launch(Dispatchers.IO) {

 authRepository.signUp(email, password)

 }

 }

 fun signIn(email: String, password: String) {

 viewModelScope.launch(Dispatchers.IO) {

 authRepository.signIn(email, password)

 }

 }

 fun signOut() {

 authRepository.signOut()

 }

 fun delete() {

 viewModelScope.launch(Dispatchers.IO) {

 authRepository.delete()

 }

 }

}

Use explicit result class for nuanced
output
• Can use a sealed class for success and failure cases
• Can provide output, e.g., via a snackbar, to indicate when user actions

are successful or not.

• Teacher code with use of sealed class for results is in
firebaseAuthWithResults branch

• We want to distinguish between the case where there is an actual error (Failure), where the
operation completed with desired outcome Success(true)(and where it completed without
the desired outcome Success(false)

• We also want a special state that represents that no pertinent action is in progress

sealed class ResultAuth<out T> {

 data class Success<out T>(val data: T) : ResultAuth<T>()

 data class Failure(val exception: Throwable) : ResultAuth<Nothing>()

 object Inactive : ResultAuth<Nothing>()

 object InProgress : ResultAuth<Nothing>()

}

In AuthViewModel
• Create a StateFlow that will store the result of a call to the repository.

• Here is an example for sign up. Repeat similarly for the other cases.

private val _signUpResult = MutableStateFlow<ResultAuth<Boolean>?>(ResultAuth.Inactive)
val signUpResult: StateFlow<ResultAuth<Boolean>?> = _signUpResult

fun signUp(email: String, password: String) {
 _signUpResult.value = ResultAuth.InProgress
 viewModelScope.launch(Dispatchers.IO) {
 delay(3000) // TODO: Remove. Only here to demonstrate inprogress snackbar
 try {
 val success = authRepository.signUp(email, password)
 _signUpResult.value = ResultAuth.Success(success)
 } catch (e: FirebaseAuthException) {
 _signUpResult.value = ResultAuth.Failure(e)
 } finally {
 // Reset the others since they are no longer applicable
 _signInResult.value = ResultAuth.Inactive
 _signOutResult.value = ResultAuth.Inactive
 _deleteAccountResult.value = ResultAuth.Inactive
 }
 }
 }

In AuthScreen
• In our composable, we want to be able to show a snackbar on success or failure (or while waiting)

• For this, we need to use a launched effect that only is triggered when the result value changes.

• Here is an example for sign up. Repeat similarly for the other cases

val signUpResult by authViewModel.signUpResult.collectAsState(ResultAuth.Inactive)

val snackbarHostState = remember { SnackbarHostState() } // Material 3 approach

// Show a Snackbar when sign-up is successful, etc.

LaunchedEffect(signUpResult) {

 signUpResult?.let {

 if (it is ResultAuth.Inactive) {

 return@LaunchedEffect

 }

 if (it is ResultAuth.InProgress) {

 snackbarHostState.showSnackbar("Sign-up In Progress")

 return@LaunchedEffect

 }

 if (it is ResultAuth.Success && it.data) {

 snackbarHostState.showSnackbar("Sign-up Successful")

 } else if (it is ResultAuth.Failure || it is ResultAuth.Success) { // success(false) case

 snackbarHostState.showSnackbar("Sign-up Unsuccessful")

 }

 }

 }

	Application Development II
	Objectives
	Course Schedule
	Kahoot Quiz Instructions + Sign-Up
	Firebase Authentication
	Add Project in Firebase Console
	Click on Android button
	Slide 8
	Slide 9
	Root level Gradle Change
	Module Level Gradle Change
	Slide 12
	Setup on Firebase online
	Slide 14
	Slide 15
	Auth with email/password
	Generalized Interface
	AuthRepositoryFirebase
	Helper function to convert from FirebaseUser to User
	Main operations
	AuthViewModel
	AuthViewModelFactory
	Manual Dependency Injection
	AuthLoginScreen
	Test It Out
	Dispatchers
	Slide 27
	Use explicit result class for nuanced output
	Slide 29
	In AuthViewModel
	In AuthScreen

