
420-5A6-AB
Instructor: Talib Hussain

Day 23:
Flows, ViewModels and
DataStore: Persisting Data

Application
Development II

Persist Data

• So far, we've been able to store information in our viewModel and display it as it changes.

• But, what happens if you re-run the application?
• Gone!

• We would like to be able to persist data.

• One approach is to store the information on the device.

• Android offers the DataStore to do this.

• Two types:
• Preferences DataStore – simple key-value pairs
• Proto DataStore – more complex data

• Let's try the Preferences DataStore
• See the "persistData" branch in Teacher's code

DataStore

• Note: Many of these examples use automated Dependency Injection (typically with Hilt).

• Simple walkthrough: https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea

• https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3

• https://developer.android.com/codelabs/android-preferences-datastore#7

• https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334

• https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpY
VN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed

• https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
• Nice walkthrough

• Room:
• https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2

• Firebase:
• https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3
https://developer.android.com/codelabs/android-preferences-datastore#7
https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

DataStore = Asynchronous Local
Data Storage

Preferences DataStore

• Preferences DataStore stores and accesses data using key-value pairs
• Useful for a small dataset

• This implementation does not require a predefined schema
• It does not provide type safety.
• DataStore uses Kotlin coroutines and Flow to store data

asynchronously, consistently, and transactionally.
• It directly avoids doing any work that blocks the UI thread

• https://developer.android.com/topic/libraries/architecture/datastore

https://developer.android.com/topic/libraries/architecture/datastore

Separation of Concerns

• The idea is to separate the UI from the data storage, using the ViewModel
as an intermediary to hide the specific details of the data layer.
• https://betterprogramming.pub/2-way-flow-using-jetpack-compose-and-datastore-

36305301347d?gi=034df17be5a4

https://betterprogramming.pub/2-way-flow-using-jetpack-compose-and-datastore-36305301347d?gi=034df17be5a4
https://betterprogramming.pub/2-way-flow-using-jetpack-compose-and-datastore-36305301347d?gi=034df17be5a4

4. Repository-based approach using
Datastore
• We will create a Repository interface for persisting our ProfileData
• Save our data, get our data, clear our data

• We will create a Repository implementation that is backed by a
Preferences DataStore
• Save our data to file, get our data from file, clear the data in the file

• We will create a ViewModel that uses the repository to get/update
the profile data
• We will create a Screen that uses that ViewModel

4. Repository Interface

• We need asynchronous-based operations. Thus, the use of suspend
and Flows.

interface ProfileRepository {
 suspend fun saveProfile(profileData: ProfileData)
 fun getProfile(): Flow<ProfileData>
 suspend fun clear()
}

4. Using Preferences DataStore
• In build.gradle, add the following dependency

• implementation("androidx.datastore:datastore-preferences:1.0.0")

• Create a DataStore file containing a DataStore class. The data store needs to accept a Context as a parameter.

• A given DataStore is saved using a filename (e.g., profile_datastore)
const val PROFILE_DATASTORE ="profile_datastore"

private val Context.dataStore: DataStore<Preferences> by preferencesDataStore(name = PROFILE_DATASTORE)

class ProfileRepositoryDataStore (private val context: Context) : ProfileRepository {

• The set of information that will be stored in the DataStore are indicated using "preferencesKeys". For convenience, these can be defined in a companion object.
companion object {

 val NAME = stringPreferencesKey("NAME")

 val COUNTER = intPreferencesKey("COUNTER")

 }

• A preferences datastore provides an edit() function that transactionally updates the data in a DataStore
/** Update the values in the DataStore. */

 override suspend fun saveProfile(profileData: ProfileData) {

 context.dataStore.edit {

 it[NAME] = profileData.name

 it[COUNTER] = profileData.counter

 }

 }

• We read information from the datastore as a Flow.
Override fun getProfile(): Flow<ProfileData> = context.dataStore.data.map {

 ProfileData(

 name = it[NAME] ?: "",

 counter = it[COUNTER] ?: 0

)

 }

• Other operations include clear()
 override suspend fun clear() {

 context.dataStore.edit {

 it.clear()

 }

 }

DataStore
// Preferences DataStore: It stores and accesses data using keys.

// This implementation does not require a predefined schema

// and does not provide type safety.

const val PROFILE_DATASTORE ="profile_datastore"

private val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = PROFILE_DATASTORE)

class ProfileRepositoryDataStore (private val context: Context) :
ProfileRepository {

 companion object {

 val NAME = stringPreferencesKey("NAME")

 val COUNTER = intPreferencesKey("COUNTER")

 }

 /** Update the values in the DataStore. */

 override suspend fun saveProfile(profileData: ProfileData) {

 context.dataStore.edit {

 it[NAME] = profileData.name

 it[COUNTER] = profileData.counter

 }

 }

 /** Get the data in the DataStore as a flow. Since the store may have never

 * been used yet, handle the null case with default values. */

 override fun getProfile(): Flow<ProfileData> = context.dataStore.data.map {

 ProfileData(

 name = it[NAME] ?: "",

 counter = it[COUNTER] ?: 0

)

 }

 override suspend fun clear() {

 context.dataStore.edit {

 it.clear()

 }

 }

}

ViewModel backed by DataStore
/** Simple view model that keeps track of a single value (count in this case) */

class MyViewModelSimpleSaved(private val profileRepository: ProfileRepository) :
ViewModel() {

 // private UI state (MutableStateFlow)

 private val _uiState = MutableStateFlow(ProfileData())

 // public getter for the state (StateFlow)

 val uiState: StateFlow<ProfileData> = _uiState.asStateFlow()

 /* Method called when ViewModel is first created */

 init {

 // Start collecting the data from the data store when the ViewModel is created.

 viewModelScope.launch {

 profileRepository.getProfile()collect { profileData ->

 _uiState.value = profileData

 }

 }

 }

 fun setName(newName: String) {

 viewModelScope.launch {

 _uiState.update { it.copy(name = newName) }

 profileRepository.saveProfile (_uiState.value)

 }

 }

 /* Increments the value of the counter stored in the state flow */

 fun increment() {

 viewModelScope.launch {

 var count = _uiState.value.counter;

 _uiState.update { currentState ->

 currentState.copy(counter = count + 1)

 }

 profileRepository.saveProfile (_uiState.value)

 }

 }

}

Only One Instance!

• Never create more than one instance of DataStore for a given file in the
same process.
• Doing so can break all DataStore functionality.

• If there are multiple DataStores active for a given file in the same process, DataStore
will throw IllegalStateException when reading or updating data.

• This means that we need to "inject" a single DataStore object into our
ViewModel.
• As the application is recomposed and reconfigured, we don't want that object to

change
• This is called Dependency Injection
• Recall: We did a simplified example of dependency injection with our normal and test

databases in the Web 2 course.

Manual Dependency Injection

• This is a good video that walks through manual injection.
• Note: Hard to find good online descriptions of manual dependency injection in Compose.
• Automated injection using tools like Hilt can be very confusing to learn…
• https://www.youtube.com/watch?v=eX-y0IEHJjM

• There are a few steps we need to take to ensure that the object we want to inject is created only once

• First, we create a new "AppModule" file.

/** This module provides the specific object(s) we will inject */
class AppModule(
 private val appContext: Context
) {
 /* Create appropriate repository (backed by a DataStore) on first use.
 Only one copy will be created during lifetime of the application. */
 val profileRepository : ProfileRepository by lazy {
 ProfileRepositoryDataStore(appContext)
 }
}

https://www.youtube.com/watch?v=eX-y0IEHJjM

"App"
• Create new class at root level called MyApp

/** This file allows us to provide a single ("static") module that can be accessed

 * everywhere in the code, and in turn provide the specific (singleton) objects we will inject.

 */

class MyApp: Application() {

 /* Always be able to access the module ("static") */

 companion object {

 lateinit var appModule: AppModule

 }

 /* Called only once at beginning of application's lifetime */

 override fun onCreate() {

 super.onCreate()

 appModule = AppModule(this)

 }

}

• Also, add "MyApp" to manifest (AndroidManifest.xml)

 <application

 android:name=".MyApp"

 …

ViewModel Factory

• The viewModel() function that we have been using in the constructor calls to our Screens does an important job – it creates a
viewModel of the right type when first accessed, and always maps to that single viewModel when the composable is
recreated/recomposed.
• But, it does not "accept parameters" directly.

• We need to use a "factory" to create the view model with parameters.
• We need the parameter since this is the "injection" of the DataStore that will back our ViewModel.

/* ViewModel Factory that will create our view model by injecting the
 ProfileDataStore from the module.
 */
class MyViewModelSimpleSavedFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass: Class<T>): T {
 return MyViewModelSimpleSaved(MyApp.appModule.profileRepository) as T
 }
}

• You can put this in its own class or in the same file as the MyViewModelSimpleSaved viewmodel.

• Regardless of whether you use viewModel() or with Hilt
hiltViewModel() to retrieve your ViewModel, they both will call
onCleared() when the NavHost finishes transitioning to a different
route
• So whenever you navigate to another Composable, it will be cleaned

up. This is achieved by defining a DisposableEffect on the navigation
route when the NavHost is created and you can mimic the behavior
even if you’re not using the navigation library and need to clean up
the ViewModel yourself.
• https://www.droidcon.com/2021/10/25/jetpack-compose-navigation-architec

ture-with-viewmodels/

https://www.droidcon.com/2021/10/25/jetpack-compose-navigation-architecture-with-viewmodels/
https://www.droidcon.com/2021/10/25/jetpack-compose-navigation-architecture-with-viewmodels/

• https://olshevski.github.io/compose-navigation-reimagined/shared-
view-models/

Sharing Views Across Navigation

• https://www.youtube.com/watch?v=FIEnIBq7Ups

• https://medium.com/@ffvanderlaan/navigation-in-jetpack-compose-
using-viewmodel-state-3b2517c24dde

• https://mahan-yt.medium.com/compose-navigation-with-viewmodel-
9f5ba9013975

https://www.youtube.com/watch?v=FIEnIBq7Ups
https://medium.com/@ffvanderlaan/navigation-in-jetpack-compose-using-viewmodel-state-3b2517c24dde
https://medium.com/@ffvanderlaan/navigation-in-jetpack-compose-using-viewmodel-state-3b2517c24dde
https://mahan-yt.medium.com/compose-navigation-with-viewmodel-9f5ba9013975
https://mahan-yt.medium.com/compose-navigation-with-viewmodel-9f5ba9013975

More Notes on View Model Factory
• The function viewModel(...) will create a new HomeViewModel if it's the first time you request the ViewModel, or it will return the previous

instance of HomeViewModel if it already exists. That's one of the advantages of using ViewModels, because on configuration change (or on
recomposition) your ViewModel should be reused, not created again. And the way it works is by using a ViewModelProvider.Factory to create the
ViewModel when it's necessary. Your ViewModel has a parameter on its constructor, there's no way the default Android classes would know how to
create your ViewModel and pass that parameter (i.e. the repository) without you providing a custom ViewModelProvider.Factory. If your
ViewModel doesn't have any parameters, the default ViewModelProvider.Factory uses reflection to create your class by using the no-argument
constructor.

• By using viewModels and ViewModelProvider.Factory, the framework will take care of the lifecycle of the ViewModel. It will survive configuration
changes and even if the Activity is recreated, you'll always get the right instance of the WordViewModel class.

• Factory is used because ViewModel creation is conditional - it will only happen if ViewModelProvider does not contain given ViewModel.

• Implementations of ViewModelProviders.Factory interface are responsible to instantiate ViewModels. That means you write your own
implementation for creating an instance of ViewModel.

• When to use ViewModelProvider.Factory?
• If your ViewModel have dependencies then you should pass this dependencies through the constructor (It is the best way to pass your dependencies), so you can

mock that dependencies and test your ViewModel.

• When not to use ViewModelProvider.Factory
• If your ViewModel have no dependencies then you will not require to create your own ViewModelProvider.Factory. The default implementation is enough to create

ViewModel for you.

• https://stackoverflow.com/questions/67985585/why-do-we-need-viewmodelprovider-factory-to-pass-view-model-to-a-screen

• https://medium.com/koderlabs/viewmodel-with-viewmodelprovider-factory-the-creator-of-viewmodel-8fabfec1aa4f

• https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories

https://stackoverflow.com/questions/67985585/why-do-we-need-viewmodelprovider-factory-to-pass-view-model-to-a-screen
https://medium.com/koderlabs/viewmodel-with-viewmodelprovider-factory-the-creator-of-viewmodel-8fabfec1aa4f
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories

ViewModels with Dependencies

• https://developer.android.com/topic/libraries/architecture/viewmodel/
viewmodel-factories
• Following dependency injection's best practices, ViewModels can take

dependencies as parameters in their constructor.
• These are mostly of types from the domain or data layers.

• Because the framework provides the ViewModels, a special mechanism
is required to create instances of them.
• That mechanism is the ViewModelProvider.Factory interface.
• Only implementations of this interface can instantiate ViewModels in the right

scope.
• (Note: When injecting ViewModels using Hilt as a dependency injection

solution, you don't have to define a ViewModel factory manually)

https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories

Use Factory

• Finally, once we have all the above, we can call the factory in the
constructor of our Screen as follows:

/* This constructor will new up our view model using injection as appropriate (in
Factory) */
@Composable
fun MySimpleSavedScreen(myViewModel: MyViewModelSimpleSaved =
 viewModel(factory=MyViewModelSimpleSavedFactory())) {

• This should now create an appropriate ViewModel backed by a
DataStore, and only one of these objects will exist for the lifetime of the
application.
• This is important for data integrity.

Reading / Codelab

• Read these links
• https://developer.android.com/topic/architecture/ui-layer
• https://developer.android.com/topic/architecture/domain-layer
• https://developer.android.com/topic/architecture/data-layer
• https://medium.com/@bhavnathacker14/viewmodels-in-clean-archit

ecture-dos-and-donts-part-1-3f8d7fe43aa2

• This optional codelab will walk you through using a
preferences DataStore
• https://developer.android.com/codelabs/android-preferences-datasto

re#5

https://developer.android.com/topic/architecture/domain-layer
https://developer.android.com/topic/architecture/domain-layer
https://developer.android.com/topic/architecture/data-layer
https://medium.com/@bhavnathacker14/viewmodels-in-clean-architecture-dos-and-donts-part-1-3f8d7fe43aa2
https://medium.com/@bhavnathacker14/viewmodels-in-clean-architecture-dos-and-donts-part-1-3f8d7fe43aa2
https://developer.android.com/codelabs/android-preferences-datastore#5
https://developer.android.com/codelabs/android-preferences-datastore#5

Notes: Share a Viewmodel

• viewModel() returns an existing ViewModel or creates a new one in
the given scope.
• The ViewModel is retained as long as the scope is alive.
• For example, if the composable is used in an activity, viewModel() returns the

same instance until the activity is finished or the process is killed.

• https://www.appsloveworld.com/kotlin/100/85/how-can-i-share-view
model-from-one-screen-to-another-screen-in-jetpack-compose

• https://issuetracker.google.com/issues/188693123?pli=1

https://www.appsloveworld.com/kotlin/100/85/how-can-i-share-viewmodel-from-one-screen-to-another-screen-in-jetpack-compose
https://www.appsloveworld.com/kotlin/100/85/how-can-i-share-viewmodel-from-one-screen-to-another-screen-in-jetpack-compose
https://issuetracker.google.com/issues/188693123?pli=1

Notes: ViewModel & Navigation

• https://stackoverflow.com/questions/69002018/why-a-new-viewmodel-is-created-in
-each-compose-navigation-route

• Usually view model is shared for the whole composables scope, and init shouldn't be
called more than once.

• But if you're using compose navigation, it creates a new model store owner for each
destination. If you need to share models between destination, you can do it like in
two ways:

• By passing it directly to viewModel call. In this case only the passed view model will
be bind to parent store owner, and all other view models created inside will be
bind(and so destroyed when route is removed from the stack) to current route.

• By proving value for LocalViewModelStoreOwner, so all composables inside will be
bind to the parent view model store owner, and so are not gonna be freed when
route is removed from the stack.

https://stackoverflow.com/questions/69002018/why-a-new-viewmodel-is-created-in-each-compose-navigation-route
https://stackoverflow.com/questions/69002018/why-a-new-viewmodel-is-created-in-each-compose-navigation-route

Notes: Hilt Dependency Injection
• Hilt is the recommended solution for dependency injection in Android apps, and works seamlessly with Compose.

• https://developer.android.com/jetpack/compose/libraries#hilt
• https://levelup.gitconnected.com/dependency-injection-with-hilt-in-android-73921b76c661
• https://medium.com/@Shvet5/datastore-in-compose-c28504958552
• https://medium.com/@ramg7/android-user-preferences-simplified-preferences-datastore-with-hilt-c08da9691667

• The viewModel() function mentioned in the ViewModel section automatically uses the ViewModel that Hilt constructs with the
@HiltViewModel annotation.

• It actually turns out to be complex to figure out, so let's skip it…
@HiltViewModel
class MyViewModel @Inject constructor(
 private val savedStateHandle: SavedStateHandle,
 private val repository: ExampleRepository
) : ViewModel() { /* ... */ }

// import androidx.lifecycle.viewmodel.compose.viewModel
@Composable
fun MyScreen(
 viewModel: MyViewModel = viewModel()
) { /* ... */ }

• Dependencies for hilt and navigation
dependencies {
 implementation("androidx.hilt:hilt-navigation-compose:1.0.0")
}

https://developer.android.com/jetpack/compose/libraries#hilt
https://levelup.gitconnected.com/dependency-injection-with-hilt-in-android-73921b76c661
https://medium.com/@Shvet5/datastore-in-compose-c28504958552
https://medium.com/@ramg7/android-user-preferences-simplified-preferences-datastore-with-hilt-c08da9691667

	Application Development II
	Persist Data
	DataStore
	DataStore = Asynchronous Local Data Storage
	Preferences DataStore
	Separation of Concerns
	Slide 7
	4. Repository-based approach using Datastore
	4. Repository Interface
	4. Using Preferences DataStore
	DataStore (2)
	ViewModel backed by DataStore
	Only One Instance!
	Manual Dependency Injection
	"App"
	ViewModel Factory
	Slide 17
	Slide 18
	Slide 19
	Sharing Views Across Navigation
	More Notes on View Model Factory
	ViewModels with Dependencies
	Use Factory
	Reading / Codelab
	Notes: Share a Viewmodel
	Notes: ViewModel & Navigation
	Notes: Hilt Dependency Injection

