Application
Development Ii

420-5A6-AB
Instructor: Talib Hussain

Day 19-20:

ViewModels, Coroutines,
Flows

Objectives

* ViewModel

* Coroutines

* Side-effects

* Flow

* Data Storage

* Work on Assignment #3 / Milestone 2

Parcelize

* In order to use a custom data class in rememberSaveable, it needs to be “parcelable”.
* This is like Serializable in Java.

* To do this, you add an annotation and type to the data class declaration

import android.os.Parcelable
import kotlinx.parcelize.Parcelize

@Parcelize
data class myDataClass(var foo: String, var goo: Int) : Parcelable

* In gradle, you also need to add a plugin (in the plugin section at the top).

id(“kotlin-parcelize”)

* Don't forget to sync gradle

ViewModel

* So far, we have declared state variables within
composables and used remember/
rememberSaveable to persist state

* An alternative approach is to define a ViewMode
to hold the state to be displayed by the Ul

* AViewModel is a class

* AViewModel stores the app-related data that isn'
destroyed when the activity is destroyed and
recreated by the Android framework

* The ViewModel provides the Ul with access to the
other layers, like the business and data layers.

* The app automatically retains ViewModel objects
during configuration changes so that the data they
hold is immediately available after the
recomposition.

* The state in a ViewModel will persist across
configuration changes such as phone rotation

Application .

data

UI
state

v

v

ViewModel

T events

Ul elements

ViewModel

* ViewModels are recommended to be used at screen-level composables, that is, close to a root
composable called from an activity or destination of a Navigation graph.

* E.g., YYYViewModel to support YYYScreen

* ViewModels should never be passed down to other composables, instead you should pass only
the data they need and functions that perform the required logic as parameters.

* E.g., if storing a list in a ViewModel, then the associated Screen should pass that list to a DisplayList
composable

* |t should NOT pass the viewModel to the DisplayList composable.

* ViewModels are not part of the Composition. Therefore, you should not hold state created in
composables (for example, a remembered value) because this could cause memory leaks.

* j.e., define the state in the ViewModel, then use that state in the composable

Defining a ViewModel

Add the following to gradle:

* implementation("androidx.lifecycle:lifecycle-viewmodel-compose:{latest_version}")
* Create a new folder called viewmodels

* Define a new view model class. It must extend ViewModel
class MySimpleViewModel : ViewModel() {

}

* Let's create a simple counter that will be used by our view

* To do this, we want to define a private mutable variable in our view model
* This is because we only want to be able to directly modify it within that class
private var _count by mutableStateOf(0)

* We can then define a public immutable field and override its getter. This essentially makes the value of our private
state variable publicly readable.

val count: Int
get() = _count

* Finally, let's define a function that will update our private counter.
fun increment() { _count +=1 }

class MySimpleViewModel : ViewModel() {
// Declare private mutable variable that can only be modified
// within the class it is declared.

private var _count by mutableStateOf(0)

// Declare a public immutable field and override its getter method.
// Return the private property's value in the getter method.

// When count is accessed, the get() function is called and

// the value of _count is returned.

val count: Int

get() = _count

fun increment() {

_count +=1

Using a ViewModel

* To use the viewModel in our screen, we can create it using the viewMode 1() function

* The view model is passed into our screen as a parameter
e Or, we can create it within the constructor of our Screen. (This is somewhat easier)

@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {

}

* Within our screen, we can access the public values/functions of our view model
* E.g., myViewModel.increment() or myViewModel.count

* Try it - Create a Screen that will display the latest count value and let the user increment the value by
pressing a button

* Once you have it working, rotate the phone - the state should persist.

/* Composable that gets all state information from its view model. */
@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {
Column {
Button(
onClick = { myViewModel.increment() },

) {

Text(text = "Increment")

}
Text("Total items added by user: ${myViewModel.count}")

Let's Try a List...

private val _items = mutableStateListOf<String>()
val items: List<String>
get() = _items

fun add(String? item) {
_items.add(item)

fun remove(item: String) {
_items.remove(item)

* Note: We need to use a MutableStateList, not a MutableList.

* |f our screen needs to pass details of the view model to a child composable, such as to display or
change the list, it should not pass the viewModel.

* E.g.,

DisplayChangingList(theList = myViewModel.items, add = myViewModel::add, remove =
myViewModel::remove)

* And,in turn,

@Composable

fun DisplayChangingList(theList: List<String>,
add:(String?) -> Unit,
remove:(String) -> Unit) {

class MySimpleViewModel : ViewModel() {
// Declare private mutable variable that can only be modified
// within the class it is declared.
private var _count by mutableStateOf(0)
private val _items = initialList().toMutableStateList()

// Declare a public immutable field and override its getter method.
// Return the private property's value in the getter method.
// When count is accessed, the get() function is called and
// the value of _count is returned.
val count: Int
get() = _count
val items: List<String>

get() = _items

fun increment() {

_count +=1

}

fun add() {
_items.add("Item # ${count+10}") // add initial size of list
_count++

}

fun remove(item: String) {

_items.remove(item)

@Composable

fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel())
{

Column {

Text("Total items added by user: ${myViewModel.count}")

DisplayChangingList(theList = myViewModel.items, add =
myViewModel::add,

remove = myViewModel::remove)

@Composable
fun DisplayChangingList(theList: List<String>,
add:() -> Unit,

remove:(String) -> Unit) {

LazyColumn {

item() {
Button(
onClick = {add()},
) {
Text(text = "Add Item")
}
}

itemsindexed(thelList) { index, item ->
Text(
text = "#s$index: $item",
modifier = Modifier
.clickable { remove(item) }

.padding(16.dp)

Try It!

* Step 12 of the codelab we worked on previously introduces the use of a
simple ViewModel.
* Complete the earlier codelab (you may have stopped at step 9)
* https://developer.android.com/codelabs/jetpack-compose-state#11

* Optional: The following codelab also introduces a ViewModel, but uses
some Kotlin language features (e.g., coroutines, flows) that we haven't
learned yet.

e https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmo
del-and-state#3

https://developer.android.com/codelabs/jetpack-compose-state#11
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3

e https://developer.android.com/courses/android-basics-compose/cour
se

e Unit5

* https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/c
hapters/1-what-is-asynchronous-programming#toc-chapter-007-anch

or-008

https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses/android-basics-compose/course
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008

Kotlin Coroutine

* Coroutines offer asynchronous programming support at the language level in Kotlin.

* A coroutine is an instance of suspendable computation.
* ltis conceptually similar to a thread, in the sense that it takes a block of code to run that works concurrently with the rest of the code.
* However, a coroutine is not bound to any particular thread. It may suspend its execution in one thread and resume in another one.
* Coroutines can be thought of as light-weight threads.

* Compose offers APIs that make using coroutines safe within the Ul layer

* The rememberCoroutineScope function returns a CoroutineScope with which you can create coroutines in event handlers
and call Compose suspend APIs.

* Try this:
fun main() = runBlocking { // this: CoroutineScope
launch { // launch a new coroutine and continue
delay(1000L) // non-blocking delay for 1 second (default time unit is ms)
printIn("World!") // print after delay
}

printin("Hello") // main coroutine continues while a previous one is delayed

Try It!: Coroutines

* Visit the following two web pages. Read the pages in detail and try out each code
example in an IDE. Play around with it a bit to get a sense of how coroutines and
flows work.

e https://kotlinlang.org/docs/coroutines-basics.html

* Then, complete as much of these three codelabs as possible during remaining
classtime.

. hgtggz//developer.android.com/codelabs/basic-android-kotlin—comDose-coroutines-kotlin-DIavgrou
na#o

e https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
e Don't do step 7 (unit tests)

e Other available labs/links:

* https://developer.android.com/codelabs/kotlin-coroutines (not Compose)
* https://www.baeldung.com/kotlin/coroutines

https://kotlinlang.org/docs/coroutines-basics.html
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
https://developer.android.com/codelabs/kotlin-coroutines

Side-Effects

* Side-effects:

https://developer.android.com/jetpack/compose/side-effects

* https://medium.com/@ mortitech/exploring-side-effects-in-compose-
f2e8a8da%946b

* https://proandroiddev.com/mastering-side-effects-in-jetpack-compos
e-b7ee46162c01

* https://www.composables.com/tutorials/side-effects

https://developer.android.com/jetpack/compose/side-effects
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://www.composables.com/tutorials/side-effects

Jetpack Compose Side Effects (relating)

DisposableEffect)
~ Not CoroutineScope
Launch once on first compose
Terminate trigger onDispose
Launch on every \ 99 pose)y
recomposition
J
Have
Launch Every Termination Detection
Recomposition
LaunchedEffect
CoroutineScope
Launch once on first
compose or with Keys
Launchable

Side
Effects

Produce a
state value

2022-01-25

derivedStateOf
remember scope
Trigger when value changed

Trigger by produce a state value

value change

Produce Kotlin Flow

produceState
CoroutineScope
Launch once on first compose Produce updated value
or with Keys for running side effect

Terminate trigger awaitDispose
produce a state value

snapshotFlow
CoroutineScope
Trigger when value changed

Manually Trigger produce Kotlin Flow

rememberUpdatedState
remember scope
Trigger when value changed
produced updated value for
same state value

rememberCoroutineScope
CoroutineScope
Trigger on manual launch
produced coroutine scope for
manual launching

Producer
Side
Effects

Flow

* Read:
e https://kotlinlang.org/docs/flow.html#flows-are-cold

* Codelab:

e https://developer.android.com/codelabs/jetpack-compose-advanced-state-si
de-effects

e https://developer.android.com/codelabs/advanced-kotlin-coroutines

https://kotlinlang.org/docs/flow.html#flows-are-cold
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/advanced-kotlin-coroutines

From threads to coroutines

Thread Coroutine

Blocking Suspending
thread coroutine

Coroutine

computation that can be suspended

thread ——

coroutine

Coroutine

computation that can be suspended

suspended:

-

thread ——

coroutine

Coroutine

computation that can be suspended

suspended:

e

thread —— -

coroutine

Coroutine

computation that can be suspended

suspended:

g

coroutine

thread

Coroutine

computation that can be suspended

suspended:

[
/7N
twoas —— HHOH

coroutine

Thread is not blocked!

StateFlow

e StateFlow is a data holder observable flow that emits the current and
new state updates.
* |ts value property reflects the current state value.

* To update state and send it to the flow, assign a new value to the value
property of the MutableStateFlow class

* In Android, StateFlow works well with classes that must maintain an
observable immutable state.

Kotlin Flows

* Asuspending function asynchronously returns a single value, but how can we return multiple asynchronously computed values?
This is where Kotlin Flows come in.

* Using the List<Int> result type, means we can only return all the values at once.

* Torepresent the stream of values that are being computed asynchronously, we can use a Flow<Int> type just like we would use a Sequence<Int>
type for synchronously computed values:

* Let's review this page together:
* https://kotlinlang.org/docs/flow.html

* Flows are cold streams similar to sequences — the code inside a flow builder does not run until the flow is collected.

* Terminal operators on flows are suspending functions that start a collection of the flow. The collect operator is the most basic one,
but there are others such as toList(), toSet(), first(), reduce()

* Calling toList() on a Flow collects all of the objects emitted by the Flow and returns them to you in a List.

* https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a

* https://developer.android.com/kotlin/flow

* https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

https://kotlinlang.org/docs/flow.html
https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a
https://developer.android.com/kotlin/flow
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow
https://blog.canopas.com/7-useful-ways-to-create-flow-in-kotlin-577992b73315

Flow

Consumer [Intermediary] Producer

Misc Flows

e collectAsState is an extension on StateFlow.

* Collects values from this StateFlow and represents its latest value via
State.

* You need to handle the collection as per appropriate Lifecyle.

* You may see documentation online regarding LiveData. Kotlin does
something different with its Flows

* https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-fl
ow-379292f419fb

https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb
https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb

Flow: List vs non-List

* From ChatGPT (even more typing saved!)

* The difference between Flow<List<Frog>> and Flow<Frog> lies in the nature of the emitted values and the
structure of the resulting flow.

* Flow<List<Frog>>:
* This represents a flow that emits lists of Frog objects.
* Each emission of the flow contains a list of Frog objects.
* |tis useful when you expect multiple Frog objects to be emitted together as a batch or collection.
* For example, if you want to fetch a list of all frogs from a database and receive the entire list at once.

* Flow<Frog>:
* This represents a flow that emits individual Frog objects.
* Each emission of the flow contains a single Frog object.

* |tis useful when you want to process Frog objects one at a time or react to individual Frog objects as they are
emitted.

* For example, if you want to observe a stream of real-time updates for individual frogs in a dynamic manner.
* |In summary, Flow<List<Frog>> emits lists of Frog objects, while Flow<Frog> emits individual Frog objects.

The choice between the two depends on the specific use case and whether you need to work with batches
of frogs or process them individually.

DataStore

* Simple walkthrough:
https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea

* Room:
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
* https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3

* https://developer.android.com/codelabs/android-preferences-datastore#7
* https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334

* https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPB
hBOEIwANmMzoQtX8aFaxx5WF1DOpYVN429tF 3UBX3BnZu8/MfJhRqGtyme PzaypHhoCQDsQ
BwE&gclsrc=aw.ds#datastore-type

* https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html

* Nice walkthrough

* Firebase:
* https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3
https://developer.android.com/codelabs/android-preferences-datastore#7
https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

Error Handling

* https://levelup.gitconnected.com/error-handling-in-clean-architectur
e-using-flow-and-jetpack-compose-b39c729a68eb

https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb
https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb

Advanced:

Provider Pattern: Interesting "Override"

Behavior

* This may not be something we use in this
course, but it is interesting

* |In the example to the right, one
CompositionLocalProvider is declared at
the root level of the Ul tree for A

* Normally, the entire tree gets access to the
provided instance of A.

* But, we can change this value, by
wrapping a sub-tree under a new
CompositionLocalProvider.

* That way, the following sub-tree will use

the latest value, and the earlier value will
be overridden.

* This only applies for the sub-tree which was
wrapped - all the other nodes will keep on
getting the value provided at the root level:

CompositionLocalProvider
provides Value 1 for Entity A

Root ‘

Child 1 Child 3

Uses Value 1 Uses Value 1

Child 2

Uses Value 1 CompositionLocalProvider
provides Value 2 for Entity A
Child 4
Uses Value 2

Child 5
Lses Value 2

MiscC

* FlowRow/FlowColumn:
https://developer.android.com/jetpack/compose/layouts/flow

* Adaptive layouts:
https://developer.android.com/jetpack/compose/layouts/adaptive

https://developer.android.com/jetpack/compose/layouts/flow
https://developer.android.com/jetpack/compose/layouts/adaptive

