
420-5A6-AB
Instructor: Talib Hussain

Day 19-20:
ViewModels, Coroutines,
Flows

Application
Development II

Objectives

• ViewModel
• Coroutines
• Side-effects
• Flow
• Data Storage
• Work on Assignment #3 / Milestone 2

Parcelize

• In order to use a custom data class in rememberSaveable, it needs to be “parcelable”.
• This is like Serializable in Java.

• To do this, you add an annotation and type to the data class declaration

import android.os.Parcelable
import kotlinx.parcelize.Parcelize

@Parcelize
data class myDataClass(var foo: String, var goo: Int) : Parcelable

• In gradle, you also need to add a plugin (in the plugin section at the top).

id(“kotlin-parcelize”)

• Don’t forget to sync gradle

ViewModel

• So far, we have declared state variables within
composables and used remember/
rememberSaveable to persist state

• An alternative approach is to define a ViewModel
to hold the state to be displayed by the UI
• A ViewModel is a class
• A ViewModel stores the app-related data that isn't

destroyed when the activity is destroyed and
recreated by the Android framework

• The ViewModel provides the UI with access to the
other layers, like the business and data layers.

• The app automatically retains ViewModel objects
during configuration changes so that the data they
hold is immediately available after the
recomposition.

• The state in a ViewModel will persist across
configuration changes such as phone rotation

ViewModel

• ViewModels are recommended to be used at screen-level composables, that is, close to a root
composable called from an activity or destination of a Navigation graph.
• E.g., YYYViewModel to support YYYScreen

• ViewModels should never be passed down to other composables, instead you should pass only
the data they need and functions that perform the required logic as parameters.
• E.g., if storing a list in a ViewModel, then the associated Screen should pass that list to a DisplayList

composable
• It should NOT pass the viewModel to the DisplayList composable.

• ViewModels are not part of the Composition. Therefore, you should not hold state created in
composables (for example, a remembered value) because this could cause memory leaks.
• i.e., define the state in the ViewModel, then use that state in the composable

Defining a ViewModel

• Add the following to gradle:
• implementation("androidx.lifecycle:lifecycle-viewmodel-compose:{latest_version}")

• Create a new folder called viewmodels

• Define a new view model class. It must extend ViewModel
class MySimpleViewModel : ViewModel() {

}

• Let's create a simple counter that will be used by our view

• To do this, we want to define a private mutable variable in our view model
• This is because we only want to be able to directly modify it within that class
private var _count by mutableStateOf(0)

• We can then define a public immutable field and override its getter. This essentially makes the value of our private
state variable publicly readable.

 val count: Int
 get() = _count

• Finally, let's define a function that will update our private counter.
 fun increment() { _count +=1 }

class MySimpleViewModel : ViewModel() {

 // Declare private mutable variable that can only be modified

 // within the class it is declared.

 private var _count by mutableStateOf(0)

 // Declare a public immutable field and override its getter method.

 // Return the private property's value in the getter method.

 // When count is accessed, the get() function is called and

 // the value of _count is returned.

 val count: Int

 get() = _count

 fun increment() {

 _count +=1

 }

}

Using a ViewModel

• To use the viewModel in our screen, we can create it using the viewModel() function

• The view model is passed into our screen as a parameter
• Or, we can create it within the constructor of our Screen. (This is somewhat easier)

@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {
}

• Within our screen, we can access the public values/functions of our view model
• E.g., myViewModel.increment() or myViewModel.count

• Try it – Create a Screen that will display the latest count value and let the user increment the value by
pressing a button
• Once you have it working, rotate the phone – the state should persist.

/* Composable that gets all state information from its view model. */
@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {
 Column {
 Button(
 onClick = { myViewModel.increment() },
) {
 Text(text = "Increment")
 }
 Text("Total items added by user: ${myViewModel.count}")
}

Let's Try a List…

 private val _items = mutableStateListOf<String>()
 val items: List<String>
 get() = _items

fun add(String? item) {
 _items.add(item)
}

fun remove(item: String) {
 _items.remove(item)
}

• Note: We need to use a MutableStateList, not a MutableList.

• If our screen needs to pass details of the view model to a child composable, such as to display or
change the list, it should not pass the viewModel.
• E.g.,

DisplayChangingList(theList = myViewModel.items, add = myViewModel::add, remove =
myViewModel::remove)

• And,in turn,

@Composable
fun DisplayChangingList(theList: List<String>,
 add:(String?) -> Unit,
 remove:(String) -> Unit) {

}

class MySimpleViewModel : ViewModel() {

 // Declare private mutable variable that can only be modified

 // within the class it is declared.

 private var _count by mutableStateOf(0)

 private val _items = initialList().toMutableStateList()

 // Declare a public immutable field and override its getter method.

 // Return the private property's value in the getter method.

 // When count is accessed, the get() function is called and

 // the value of _count is returned.

 val count: Int

 get() = _count

 val items: List<String>

 get() = _items

 fun increment() {

 _count +=1

 }

 fun add() {

 _items.add("Item # ${count+10}") // add initial size of list

 _count++

 }

 fun remove(item: String) {

 _items.remove(item)

 }

}

@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel())
{
 Column {
 Text("Total items added by user: ${myViewModel.count}")
 DisplayChangingList(theList = myViewModel.items, add =
myViewModel::add,
 remove = myViewModel::remove)
 }
}

@Composable

fun DisplayChangingList(theList: List<String>,

 add:() -> Unit,

 remove:(String) -> Unit) {

 LazyColumn {

 item() {

 Button(

 onClick = {add()},

) {

 Text(text = "Add Item")

 }

 }

 itemsIndexed(theList) { index, item ->

 Text(

 text = "#$index: $item",

 modifier = Modifier

 .clickable { remove(item) }

 .padding(16.dp)

)

 }

 }

}

Try It!

• Step 12 of the codelab we worked on previously introduces the use of a
simple ViewModel.
• Complete the earlier codelab (you may have stopped at step 9)
• https://developer.android.com/codelabs/jetpack-compose-state#11

• Optional: The following codelab also introduces a ViewModel, but uses
some Kotlin language features (e.g., coroutines, flows) that we haven't
learned yet.
• https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmo

del-and-state#3

https://developer.android.com/codelabs/jetpack-compose-state#11
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3

• https://developer.android.com/courses/android-basics-compose/cour
se
• Unit 5

• https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/c
hapters/1-what-is-asynchronous-programming#toc-chapter-007-anch
or-008

https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses/android-basics-compose/course
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008

Kotlin Coroutine

• Coroutines offer asynchronous programming support at the language level in Kotlin.

• A coroutine is an instance of suspendable computation.
• It is conceptually similar to a thread, in the sense that it takes a block of code to run that works concurrently with the rest of the code.
• However, a coroutine is not bound to any particular thread. It may suspend its execution in one thread and resume in another one.
• Coroutines can be thought of as light-weight threads.

• Compose offers APIs that make using coroutines safe within the UI layer

• The rememberCoroutineScope function returns a CoroutineScope with which you can create coroutines in event handlers
and call Compose suspend APIs.

• Try this:
fun main() = runBlocking { // this: CoroutineScope
 launch { // launch a new coroutine and continue
 delay(1000L) // non-blocking delay for 1 second (default time unit is ms)
 println("World!") // print after delay
 }
 println("Hello") // main coroutine continues while a previous one is delayed
}

Try It!: Coroutines

• Visit the following two web pages. Read the pages in detail and try out each code
example in an IDE. Play around with it a bit to get a sense of how coroutines and
flows work.
• https://kotlinlang.org/docs/coroutines-basics.html

• Then, complete as much of these three codelabs as possible during remaining
classtime.
• https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playgrou

nd#3

• https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
• Don't do step 7 (unit tests)

• Other available labs/links:
• https://developer.android.com/codelabs/kotlin-coroutines (not Compose)
• https://www.baeldung.com/kotlin/coroutines

https://kotlinlang.org/docs/coroutines-basics.html
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
https://developer.android.com/codelabs/kotlin-coroutines

Side-Effects

• Side-effects:
https://developer.android.com/jetpack/compose/side-effects
• https://medium.com/@mortitech/exploring-side-effects-in-compose-

f2e8a8da946b
• https://proandroiddev.com/mastering-side-effects-in-jetpack-compos

e-b7ee46162c01

• https://www.composables.com/tutorials/side-effects

https://developer.android.com/jetpack/compose/side-effects
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://www.composables.com/tutorials/side-effects

Flow

• Read:
• https://kotlinlang.org/docs/flow.html#flows-are-cold

• Codelab:
• https://developer.android.com/codelabs/jetpack-compose-advanced-state-si

de-effects

• https://developer.android.com/codelabs/advanced-kotlin-coroutines

https://kotlinlang.org/docs/flow.html#flows-are-cold
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/advanced-kotlin-coroutines

StateFlow

• StateFlow is a data holder observable flow that emits the current and
new state updates.
• Its value property reflects the current state value.
• To update state and send it to the flow, assign a new value to the value

property of the MutableStateFlow class

• In Android, StateFlow works well with classes that must maintain an
observable immutable state.

Kotlin Flows

• A suspending function asynchronously returns a single value, but how can we return multiple asynchronously computed values?
This is where Kotlin Flows come in.

• Using the List<Int> result type, means we can only return all the values at once.
• To represent the stream of values that are being computed asynchronously, we can use a Flow<Int> type just like we would use a Sequence<Int>

type for synchronously computed values:

• Let's review this page together:
• https://kotlinlang.org/docs/flow.html

• Flows are cold streams similar to sequences — the code inside a flow builder does not run until the flow is collected.

• Terminal operators on flows are suspending functions that start a collection of the flow. The collect operator is the most basic one,
but there are others such as toList(), toSet(), first(), reduce()
• Calling toList() on a Flow collects all of the objects emitted by the Flow and returns them to you in a List.

• https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a

• https://developer.android.com/kotlin/flow

• https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

• https://blog.canopas.com/7-useful-ways-to-create-flow-in-kotlin-577992b73315

https://kotlinlang.org/docs/flow.html
https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a
https://developer.android.com/kotlin/flow
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow
https://blog.canopas.com/7-useful-ways-to-create-flow-in-kotlin-577992b73315

Flow

Misc Flows

• collectAsState is an extension on StateFlow.
• Collects values from this StateFlow and represents its latest value via

State.
• You need to handle the collection as per appropriate Lifecyle.

• You may see documentation online regarding LiveData. Kotlin does
something different with its Flows
• https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-fl

ow-379292f419fb

https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb
https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb

Flow: List vs non-List
• From ChatGPT (even more typing saved!)

• The difference between Flow<List<Frog>> and Flow<Frog> lies in the nature of the emitted values and the
structure of the resulting flow.

• Flow<List<Frog>>:
• This represents a flow that emits lists of Frog objects.
• Each emission of the flow contains a list of Frog objects.
• It is useful when you expect multiple Frog objects to be emitted together as a batch or collection.
• For example, if you want to fetch a list of all frogs from a database and receive the entire list at once.

• Flow<Frog>:
• This represents a flow that emits individual Frog objects.
• Each emission of the flow contains a single Frog object.
• It is useful when you want to process Frog objects one at a time or react to individual Frog objects as they are

emitted.
• For example, if you want to observe a stream of real-time updates for individual frogs in a dynamic manner.

• In summary, Flow<List<Frog>> emits lists of Frog objects, while Flow<Frog> emits individual Frog objects.
The choice between the two depends on the specific use case and whether you need to work with batches
of frogs or process them individually.

DataStore

• Simple walkthrough:
https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea

• Room:
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2

• https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3
• https://developer.android.com/codelabs/android-preferences-datastore#7
• https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334
• https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPB

hBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQ
AvD_BwE&gclsrc=aw.ds#datastore-typed

• https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
• Nice walkthrough

• Firebase:
• https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3
https://developer.android.com/codelabs/android-preferences-datastore#7
https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

Error Handling

• https://levelup.gitconnected.com/error-handling-in-clean-architectur
e-using-flow-and-jetpack-compose-b39c729a68eb

https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb
https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb

Advanced:
Provider Pattern: Interesting "Override"
Behavior
• This may not be something we use in this

course, but it is interesting

• In the example to the right, one
CompositionLocalProvider is declared at
the root level of the UI tree for A
• Normally, the entire tree gets access to the

provided instance of A.

• But, we can change this value, by
wrapping a sub-tree under a new
CompositionLocalProvider.
• That way, the following sub-tree will use

the latest value, and the earlier value will
be overridden.

• This only applies for the sub-tree which was
wrapped – all the other nodes will keep on
getting the value provided at the root level:

Misc

• FlowRow/FlowColumn:
https://developer.android.com/jetpack/compose/layouts/flow
• Adaptive layouts:

https://developer.android.com/jetpack/compose/layouts/adaptive

https://developer.android.com/jetpack/compose/layouts/flow
https://developer.android.com/jetpack/compose/layouts/adaptive

