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Day 19-20:

ViewModels, Coroutines,
Flows




Objectives

* ViewModel

* Coroutines

* Side-effects

* Flow

* Data Storage

* Work on Assignment #3 / Milestone 2



Parcelize

* In order to use a custom data class in rememberSaveable, it needs to be “parcelable”.
* This is like Serializable in Java.

* To do this, you add an annotation and type to the data class declaration

import android.os.Parcelable
import kotlinx.parcelize.Parcelize

@Parcelize
data class myDataClass(var foo: String, var goo: Int) : Parcelable

* In gradle, you also need to add a plugin (in the plugin section at the top).

id(“kotlin-parcelize”)

* Don't forget to sync gradle



ViewModel

* So far, we have declared state variables within
composables and used remember/
rememberSaveable to persist state

* An alternative approach is to define a ViewMode
to hold the state to be displayed by the Ul

* AViewModel is a class

* AViewModel stores the app-related data that isn'
destroyed when the activity is destroyed and
recreated by the Android framework

* The ViewModel provides the Ul with access to the
other layers, like the business and data layers.

* The app automatically retains ViewModel objects
during configuration changes so that the data they
hold is immediately available after the
recomposition.

* The state in a ViewModel will persist across
configuration changes such as phone rotation
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ViewModel

* ViewModels are recommended to be used at screen-level composables, that is, close to a root
composable called from an activity or destination of a Navigation graph.

* E.g., YYYViewModel to support YYYScreen

* ViewModels should never be passed down to other composables, instead you should pass only
the data they need and functions that perform the required logic as parameters.

* E.g., if storing a list in a ViewModel, then the associated Screen should pass that list to a DisplayList
composable

* |t should NOT pass the viewModel to the DisplayList composable.

* ViewModels are not part of the Composition. Therefore, you should not hold state created in
composables (for example, a remembered value) because this could cause memory leaks.

* j.e., define the state in the ViewModel, then use that state in the composable



Defining a ViewModel

Add the following to gradle:

* implementation("androidx.lifecycle:lifecycle-viewmodel-compose:{latest_version}")
* Create a new folder called viewmodels

* Define a new view model class. It must extend ViewModel
class MySimpleViewModel : ViewModel() {

}

* Let's create a simple counter that will be used by our view

* To do this, we want to define a private mutable variable in our view model
* This is because we only want to be able to directly modify it within that class
private var _count by mutableStateOf(0)

* We can then define a public immutable field and override its getter. This essentially makes the value of our private
state variable publicly readable.

val count: Int
get() = _count

* Finally, let's define a function that will update our private counter.
fun increment() { _count +=1 }



class MySimpleViewModel : ViewModel() {
// Declare private mutable variable that can only be modified
// within the class it is declared.

private var _count by mutableStateOf(0)

// Declare a public immutable field and override its getter method.
// Return the private property's value in the getter method.

// When count is accessed, the get() function is called and

// the value of _count is returned.

val count: Int

get() = _count

fun increment() {

_count +=1



Using a ViewModel

* To use the viewModel in our screen, we can create it using the viewMode 1( ) function

* The view model is passed into our screen as a parameter
e Or, we can create it within the constructor of our Screen. (This is somewhat easier)

@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {

}

* Within our screen, we can access the public values/functions of our view model
* E.g., myViewModel.increment() or myViewModel.count

* Try it - Create a Screen that will display the latest count value and let the user increment the value by
pressing a button

* Once you have it working, rotate the phone - the state should persist.



/* Composable that gets all state information from its view model. */
@Composable
fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel()) {
Column {
Button(
onClick = { myViewModel.increment() },

) {

Text(text = "Increment")

}
Text("Total items added by user: ${myViewModel.count}")



Let's Try a List...

private val _items = mutableStateListOf<String>()
val items: List<String>
get() = _items

fun add(String? item) {
_items.add(item)

fun remove(item: String) {
_items.remove(item)

* Note: We need to use a MutableStateList, not a MutableList.



* |f our screen needs to pass details of the view model to a child composable, such as to display or
change the list, it should not pass the viewModel.

* E.g.,

DisplayChangingList(theList = myViewModel.items, add = myViewModel::add, remove =
myViewModel::remove)

* And,in turn,

@Composable

fun DisplayChangingList(theList: List<String>,
add:(String?) -> Unit,
remove:(String) -> Unit) {



class MySimpleViewModel : ViewModel() {
// Declare private mutable variable that can only be modified
// within the class it is declared.
private var _count by mutableStateOf(0)
private val _items = initialList().toMutableStateList()

// Declare a public immutable field and override its getter method.
// Return the private property's value in the getter method.
// When count is accessed, the get() function is called and
// the value of _count is returned.
val count: Int
get() = _count
val items: List<String>

get() = _items

fun increment() {

_count +=1

}

fun add() {
_items.add("Item # ${count+10}") // add initial size of list
_count++

}

fun remove(item: String) {

_items.remove(item)



@Composable

fun MySimpleScreen(myViewModel: MySimpleViewModel = viewModel())
{

Column {

Text("Total items added by user: ${myViewModel.count}")

DisplayChangingList(theList = myViewModel.items, add =
myViewModel::add,

remove = myViewModel::remove)



@Composable
fun DisplayChangingList(theList: List<String>,
add:() -> Unit,

remove:(String) -> Unit) {

LazyColumn {

item() {
Button(
onClick = {add()},
) {
Text(text = "Add Item")
}
}

itemsindexed(thelList) { index, item ->
Text(
text = "#s$index: $item",
modifier = Modifier
.clickable { remove(item) }

.padding(16.dp)



Try It!

* Step 12 of the codelab we worked on previously introduces the use of a
simple ViewModel.
* Complete the earlier codelab (you may have stopped at step 9)
* https://developer.android.com/codelabs/jetpack-compose-state#11

* Optional: The following codelab also introduces a ViewModel, but uses
some Kotlin language features (e.g., coroutines, flows) that we haven't
learned yet.

e https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmo
del-and-state#3



https://developer.android.com/codelabs/jetpack-compose-state#11
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-viewmodel-and-state#3

e https://developer.android.com/courses/android-basics-compose/cour
se

e Unit5

* https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/c
hapters/1-what-is-asynchronous-programming#toc-chapter-007-anch

or-008



https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses/android-basics-compose/course
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008
https://www.kodeco.com/books/kotlin-coroutines-by-tutorials/v3.0/chapters/1-what-is-asynchronous-programming#toc-chapter-007-anchor-008

Kotlin Coroutine

* Coroutines offer asynchronous programming support at the language level in Kotlin.

* A coroutine is an instance of suspendable computation.
* ltis conceptually similar to a thread, in the sense that it takes a block of code to run that works concurrently with the rest of the code.
* However, a coroutine is not bound to any particular thread. It may suspend its execution in one thread and resume in another one.
* Coroutines can be thought of as light-weight threads.

* Compose offers APIs that make using coroutines safe within the Ul layer

* The rememberCoroutineScope function returns a CoroutineScope with which you can create coroutines in event handlers
and call Compose suspend APIs.

* Try this:
fun main() = runBlocking { // this: CoroutineScope
launch { // launch a new coroutine and continue
delay(1000L) // non-blocking delay for 1 second (default time unit is ms)
printIn("World!") // print after delay
}

printin("Hello") // main coroutine continues while a previous one is delayed



Try It!: Coroutines

* Visit the following two web pages. Read the pages in detail and try out each code
example in an IDE. Play around with it a bit to get a sense of how coroutines and
flows work.

e https://kotlinlang.org/docs/coroutines-basics.html

* Then, complete as much of these three codelabs as possible during remaining
classtime.

. hgtggz//developer.android.com/codelabs/basic-android-kotlin—comDose-coroutines-kotlin-DIavgrou
na#o

e https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
e Don't do step 7 (unit tests)

e Other available labs/links:

* https://developer.android.com/codelabs/kotlin-coroutines (not Compose)
* https://www.baeldung.com/kotlin/coroutines


https://kotlinlang.org/docs/coroutines-basics.html
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-kotlin-playground#3
https://developer.android.com/codelabs/basic-android-kotlin-compose-coroutines-android-studio
https://developer.android.com/codelabs/kotlin-coroutines

Side-Effects

* Side-effects:

https://developer.android.com/jetpack/compose/side-effects

* https://medium.com/@ mortitech/exploring-side-effects-in-compose-
f2e8a8da%946b

* https://proandroiddev.com/mastering-side-effects-in-jetpack-compos
e-b7ee46162c01

* https://www.composables.com/tutorials/side-effects



https://developer.android.com/jetpack/compose/side-effects
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://medium.com/@mortitech/exploring-side-effects-in-compose-f2e8a8da946b
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://proandroiddev.com/mastering-side-effects-in-jetpack-compose-b7ee46162c01
https://www.composables.com/tutorials/side-effects
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Flow

* Read:
e https://kotlinlang.org/docs/flow.html#flows-are-cold

* Codelab:

e https://developer.android.com/codelabs/jetpack-compose-advanced-state-si
de-effects

e https://developer.android.com/codelabs/advanced-kotlin-coroutines



https://kotlinlang.org/docs/flow.html#flows-are-cold
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/jetpack-compose-advanced-state-side-effects
https://developer.android.com/codelabs/advanced-kotlin-coroutines

From threads to coroutines

Thread Coroutine

Blocking Suspending
thread coroutine



Coroutine

computation that can be suspended

thread ——

coroutine
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StateFlow

e StateFlow is a data holder observable flow that emits the current and
new state updates.
* |ts value property reflects the current state value.

* To update state and send it to the flow, assign a new value to the value
property of the MutableStateFlow class

* In Android, StateFlow works well with classes that must maintain an
observable immutable state.



Kotlin Flows

* Asuspending function asynchronously returns a single value, but how can we return multiple asynchronously computed values?
This is where Kotlin Flows come in.

* Using the List<Int> result type, means we can only return all the values at once.

* Torepresent the stream of values that are being computed asynchronously, we can use a Flow<Int> type just like we would use a Sequence<Int>
type for synchronously computed values:

* Let's review this page together:
* https://kotlinlang.org/docs/flow.html

* Flows are cold streams similar to sequences — the code inside a flow builder does not run until the flow is collected.

* Terminal operators on flows are suspending functions that start a collection of the flow. The collect operator is the most basic one,
but there are others such as toList(), toSet(), first(), reduce()

* Calling toList() on a Flow collects all of the objects emitted by the Flow and returns them to you in a List.

* https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a

* https://developer.android.com/kotlin/flow

* https://developer.android.com/kotlin/flow/stateflow-and-sharedflow



https://kotlinlang.org/docs/flow.html
https://bladecoder.medium.com/kotlins-flow-in-viewmodels-it-s-complicated-556b472e281a
https://developer.android.com/kotlin/flow
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow
https://blog.canopas.com/7-useful-ways-to-create-flow-in-kotlin-577992b73315

Flow

Consumer [Intermediary] Producer




Misc Flows

e collectAsState is an extension on StateFlow.

* Collects values from this StateFlow and represents its latest value via
State.

* You need to handle the collection as per appropriate Lifecyle.

* You may see documentation online regarding LiveData. Kotlin does
something different with its Flows

* https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-fl
ow-379292f419fb



https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb
https://medium.com/androiddevelopers/migrating-from-livedata-to-kotlins-flow-379292f419fb

Flow: List vs non-List

* From ChatGPT (even more typing saved!)

* The difference between Flow<List<Frog>> and Flow<Frog> lies in the nature of the emitted values and the
structure of the resulting flow.

* Flow<List<Frog>>:
* This represents a flow that emits lists of Frog objects.
* Each emission of the flow contains a list of Frog objects.
* |tis useful when you expect multiple Frog objects to be emitted together as a batch or collection.
* For example, if you want to fetch a list of all frogs from a database and receive the entire list at once.

* Flow<Frog>:
* This represents a flow that emits individual Frog objects.
* Each emission of the flow contains a single Frog object.

* |tis useful when you want to process Frog objects one at a time or react to individual Frog objects as they are
emitted.

* For example, if you want to observe a stream of real-time updates for individual frogs in a dynamic manner.
* |In summary, Flow<List<Frog>> emits lists of Frog objects, while Flow<Frog> emits individual Frog objects.

The choice between the two depends on the specific use case and whether you need to work with batches
of frogs or process them individually.



DataStore

* Simple walkthrough:
https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea

* Room:
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
* https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3

* https://developer.android.com/codelabs/android-preferences-datastore#7
* https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334

* https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPB
hBOEIwANmMzoQtX8aFaxx5WF1DOpYVN429tF 3UBX3BnZu8/MfJhRqGtyme PzaypHhoCQDsQ
BwE&gclsrc=aw.ds#datastore-type

* https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html

* Nice walkthrough

* Firebase:
* https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2



https://medium.com/jetpack-composers/android-jetpack-datastore-5dfdfea4a3ea
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-2
https://developer.android.com/courses/pathways/android-basics-compose-unit-6-pathway-3
https://developer.android.com/codelabs/android-preferences-datastore#7
https://medium.com/androiddevelopers/all-about-preferences-datastore-cc7995679334
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://developer.android.com/topic/libraries/architecture/datastore?gclid=CjwKCAiA55mPBhBOEiwANmzoQtX8aFaxx5WFTDOpYVN429tF3U8X3BnZu8ZMfJhRqGtyme_PzaypHhoCQDsQAvD_BwE&gclsrc=aw.ds#datastore-typed
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://firebase.google.com/codelabs/build-android-app-with-firebase-compose#2

Error Handling

* https://levelup.gitconnected.com/error-handling-in-clean-architectur
e-using-flow-and-jetpack-compose-b39c729a68eb



https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb
https://levelup.gitconnected.com/error-handling-in-clean-architecture-using-flow-and-jetpack-compose-b39c729a68eb

Advanced:

Provider Pattern: Interesting "Override"

Behavior

* This may not be something we use in this
course, but it is interesting

* |In the example to the right, one
CompositionLocalProvider is declared at
the root level of the Ul tree for A

* Normally, the entire tree gets access to the
provided instance of A.

* But, we can change this value, by
wrapping a sub-tree under a new
CompositionLocalProvider.

* That way, the following sub-tree will use

the latest value, and the earlier value will
be overridden.

* This only applies for the sub-tree which was
wrapped - all the other nodes will keep on
getting the value provided at the root level:

CompositionLocalProvider
provides Value 1 for Entity A

Root ‘

Child 1 Child 3

Uses Value 1 Uses Value 1

Child 2

Uses Value 1 CompositionLocalProvider
provides Value 2 for Entity A
Child 4
Uses Value 2

Child 5
Lses Value 2




MiscC

* FlowRow/FlowColumn:
https://developer.android.com/jetpack/compose/layouts/flow

* Adaptive layouts:
https://developer.android.com/jetpack/compose/layouts/adaptive



https://developer.android.com/jetpack/compose/layouts/flow
https://developer.android.com/jetpack/compose/layouts/adaptive

