
420-5A6-AB
Instructor: Talib Hussain

Day 14-15:
Navigation

Application
Development II

Objectives

• Navigation
• NavHost/NavController for defining and using routes
• Provider Pattern: CompositionLocalProvider
• "Back" with popStackBack and navigateUp
• Navigate with arguments
• Navigation Animations

Multi-Screen Navigation

• So far, we've had just a single "screen" in our apps.
• In a typical app, we will often want to define multiple different screens to serve different purposes

• Display a Profile
• Product Ordering Screen
• Checkout Screen
• Information Pages
• Etc.

• While we can use conditional rendering to make a given screen very dynamic, defining different
screens is a common approach

• We want to be able to programmatically move from one screen to another
• We want the user to be able to use the system navigation (e.g., "back" button) to move between

screens too.
• https://developer.android.com/jetpack/compose/navigation
• https://medium.com/google-developer-experts/navigating-in-jetpack-compose-78c78d365c6a

https://developer.android.com/jetpack/compose/navigation
https://medium.com/google-developer-experts/navigating-in-jetpack-compose-78c78d365c6a

Initial Configuration

• First, you need to add the navigation dependency to your app/build.gradle.kts file.
• Insert the following line in the dependencies section

• implementation("androidx.navigation:navigation-compose:2.7.2")
• Latest release version information is available at:

https://developer.android.com/jetpack/androidx/releases/navigation
• Note: There is a different navigation package that is not for Compose. Be careful not to let

the IDE add that dependency for you (looks very similar but does not have the word
"compose" in it)

• Dependency 'androidx.navigation:navigation-compose:2.7.2' requires libraries and
applications that depend on it to compile against version 34 or later of the Android
APIs.
• Your app may currently be compiled against android-33.

In build.gradle.kts, change compileSdk to 34
and targetSdk in build.gradle.kts to 34

"Sync Now" and rebuild
You may need to install a new emulator device that uses API level 34

https://developer.android.com/jetpack/androidx/releases/navigation

Compose Navigation

• In Compose, the 3 main parts of Navigation are
the NavController, NavGraph, and NavHost.
• The NavController is always associated with a

single NavHost composable.
• The NavHost acts as a container and is

responsible for displaying the current destination
of the graph.
• As you navigate between composables, the content

of the NavHost is automatically recomposed.
• It also links the NavController with a NavGraph

(navigation graph)
• The NavGraph that maps out the composable

destinations to navigate between.
• It is essentially a collection of fetchable

destinations.

Router: NavHost

• Compose provides a specific composable called
NavHost that defines all the routes for your app
• A NavHost accepts two main parameters:

• A NavController
• Initial route to use

• A NavController is created using a special state
function:
• val navController = rememberNavController()

• A NavHost also defines one or more routes using
the composable() function
• We'll do this in the "content" part

Routes

• To enable navigation to a specific screen, we can define a "route" for that screen
• Similar to navigation in React.

• A route is a string corresponding to the name of a route. This can be any unique
string.
• E.g., "MainScreenRoute"

• Navigation Compose provides the NavGraphBuilder.composable extension function
to easily add individual composable destinations to the navigation graph and define
the necessary navigation information.
• For a given route, we identify the composable to use when navigating to that route

composable("MainScreenRoute") {MainScreen()}
• This calls MainScreen() composable for a route indicated by the string "MainScreenRoute"

Router

• We can define our NavHost directly in our MainActivity.kt, or we can create a
separate Router composable to encapsulate the routing logic.

@Composable
fun Router() {
 val navController = rememberNavController()

 NavHost(navController = navController, startDestination = "MainScreenRoute") {
 composable("MainScreenRoute") { MainScreen() }
 composable("AboutScreenRoute") { AboutScreen() }
 }
}

Navigating to a Route

• To navigate to a route, your need to call navController.navigate() passing in the route name.
Button(onClick = { navController.navigate("AboutScreenRoute") }) {
 Text("About Us")
}

• But, now we have a slight issue… how do we access navController lower in the hierarchy (since it is
defined near the top level)

• Several approaches possible:
• Pass navController as parameters down the tree of composables

• Messy… This is like the issue of "prop drilling" in React…
• Pass lambda "callback" functions down the tree

• Actually suggested in official and other docs, and can be useful in testing since a navController wouldn't be required to test a
specific composable… but still somewhat messy

• https://medium.com/google-developer-experts/navigating-in-jetpack-compose-78c78d365c6a
• https://developer.android.com/jetpack/compose/navigation

• Use the Provider pattern!

https://medium.com/google-developer-experts/navigating-in-jetpack-compose-78c78d365c6a
https://developer.android.com/jetpack/compose/navigation

Issue with Parameters

• Passing a parameter down the component tree to the
composable that needs is not always ideal
• Each composable in the path needs to receive and pass on

the parameter.
• When the descendant is deep in the tree compared to where

the state is defined, this results in unnecessary dependencies
and requires a lot of extra unnecessary syntax along the way.

• Also results in increased likelihood of introducing errors,
introduces unnecessary coupling and the code becomes
harder to understand and maintain

• Analogous to "prop drilling" from React.
• In example to the right, the root node produces an entity

A, which is being consumed at the 4th level child, Child 4.
A is not a singleton, and since its instance cannot be
created from anywhere apart from root node, the
created instance has to be passed down the tree up to
Child 4. In this case, instance of A is being unnecessarily
held by Children 1 through 3, which is useless for these
nodes.
• https://betterprogramming.pub/provider-pattern-in-jetpack-c

ompose-bb4f4e27185e

https://betterprogramming.pub/provider-pattern-in-jetpack-compose-bb4f4e27185e
https://betterprogramming.pub/provider-pattern-in-jetpack-compose-bb4f4e27185e

Provider Pattern

• Continuing example: Ideally, we'd like to somehow
access A directly from Child 4

• The Provider Pattern gives this to us.
• In Compose, this is done using

CompositionLocalProvider
• CompositionLocalProvider can provide a reference to

some object from the higher level in the tree, and any
child can access the provided value directly.

• This uses a CompositionLocal internally which is
scoped to a sub-tree.
• If we put this at the root level of the UI tree, it covers the

entire tree underneath, thus behaving as a Global Provider.

• A CompositionLocalProvider can be put anywhere in
the tree, and multiple providers can be used.

CompositionLocal &
CompositionLocalProvider
• CompositionLocal is a tool for passing data down through the tree of composables implicitly

• It uses the Provider pattern
• https://developer.android.com/jetpack/compose/compositionlocal
• https://medium.com/@gustavohenriques/compositional-locals-for-navigation-in-jetpack-compose-c75a261bd7ac

• First, create a top-level variable (outside of a Composable!) that will be used to access the provided value
val LocalNavController = compositionLocalOf<NavHostController> { error("No NavController found!") }

• Next, wrap the NavHost with a CompositionLocalProvider that "provides" the navController value
CompositionLocalProvider(LocalNavController provides navController) {
 NavHost(navController = navController, startDestination = "MainScreenRoute") {
 composable("MainScreenRoute") { MainScreen() }
 composable("AboutScreenRoute") { AboutScreen() }
 }
 }

• Finally, in a child composable, access the navController value using LocalNavController.current and then use that value in
appropriate handler calls.

val navController = LocalNavController.current
Button(onClick = { navController.navigate("AboutScreenRoute") })

https://developer.android.com/jetpack/compose/compositionlocal
https://medium.com/@gustavohenriques/compositional-locals-for-navigation-in-jetpack-compose-c75a261bd7ac

package com.example.kotlinwithcompose.screens

import androidx.compose.runtime.Composable

import androidx.compose.runtime.CompositionLocalProvider

import androidx.compose.runtime.compositionLocalOf

import androidx.navigation.NavController

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

import androidx.navigation.compose.rememberNavController

val LocalNavController = compositionLocalOf<NavController> { error("No NavController found!") }

@Composable

fun Router() {

 val navController = rememberNavController()

 CompositionLocalProvider(LocalNavController provides navController) {

 NavHost(navController = navController, startDestination = "MainScreenRoute") {

 composable("MainScreenRoute") { MainScreen() }

 composable("AboutScreenRoute") { AboutScreen() }

 }

 }

}

"Back"

• In addition to navigating to a specific route, we can use the navController to go back to an
earlier route on the navigation stack.

• navController.popBackStack()
• This command will navigate to the previous screen that was shown.

• navController.popBackStack("MainScreenRoute", false)
• This command will pop all screens on the stack until it reaches the indicated destination route (here:

MainScreenRoute). If the second parameter is false, then it will show that screen. If it is true, then it
will pop that too.

• We can also use navigateUp() to go back
• The main difference is that if we pop off the last screen, then it will try to go to the app that called this

app, if that was the case.

• If we want to hide the back button when there is nothing to go back to, then we can check
the stack
• canNavigateBack = navController.previousBackStackEntry != null,

Try It!

• Create 3 screens: MainScreen, AboutScreen, ContactScreen
• Create an appropriate Router with NavHost that defines routes to

those screens
• Create buttons on those screens that let you navigate among the

various screens, as well as appropriate back buttons.
• Don't show the back button if there is nothing to go back to

Navigate with Arguments

• Navigation Compose supports passing arguments between composable destinations
• https://developer.android.com/jetpack/compose/navigation

• For example, let's add a parameter to the AboutScreen composable
@Composable
fun AboutScreen(name: String) {

• To pass this new parameter, you need to add argument placeholders to your route id
composable("AboutScreenRoute/{name}")
• This adds an argument called 'name' to the route.

• This parameter is accessed via the trailing lambda for the composable() function, which provides a
single parameter
• Recall: We can just use it
• This parameter has an arguments value that we can check. It is a nullable type, so the null must be handled as

appropriate.
• composable("AboutScreenRoute/{name}") { AboutScreen(it.arguments?.getString("name") ?: "") }

• Finally, to navigate, pass the desired value in as part of the route id
navController.navigate("AboutScreenRoute/Jane")

https://developer.android.com/jetpack/compose/navigation

Simple data only as arguments…

• It is strongly advised not to pass complex objects when navigating
• Instead, pass the minimum necessary information, such as a unique ID
• Complex objects should be stored as data in a single source of truth,

such as a data layer
• Once you land on your destination after navigating, you can then load

the required information from the single source of truth using the
passed ID
• Without additional setup, you can pass string, int, long, float, bool, as

well as arrays of those types
• Note: Strings should not contain '/' or the app will crash due to an unexpected

route.

Multiple arguments

• If you want to pass multiple arguments then you can define a route
with multiple placeholders separated by slashes (“/”).
• https://www.linkedin.com/pulse/pass-arguments-destinations-jetpack-compo

se-sagar-malhotra/

 composable("ContactScreenRoute/{name}/{location}") {
 val name = it.arguments?.getString("name") ?: ""
 val location = it.arguments?.getString("location") ?: ""

 ContactScreen(name, location)
 }

https://www.linkedin.com/pulse/pass-arguments-destinations-jetpack-compose-sagar-malhotra/
https://www.linkedin.com/pulse/pass-arguments-destinations-jetpack-compose-sagar-malhotra/

Navigation Animations

• You can animate the transition between composables when navigating between them.

• NavHost has enterTransition and exitTransition parameters that can specify default animations
NavHost(
 navController = navController, startDestination = "landing",
 enterTransition = { EnterTransition.None },
 exitTransition = { fadeout() }
)

• Each route can also have its own enter and/or exit transitions
composable("AboutScreenRoute/{name}",
 enterTransition = {fadeIn() + expandIn()},
 exitTransition = { ExitTransition.None}) { AboutScreen(it.arguments?.getString("name") ?: "") }

• There are several types of transition animations
• fadeIn/Out, slideIn/Out, ScaleIn/Out, expandIn/shrinkOut, and more
• Each has various parameters
• https://developer.android.com/jetpack/compose/animation/composables-modifiers#enter-exit-transition
• https://medium.com/@nitheeshag/navigation-in-jetpack-compose-with-animations-724037d7b119

https://developer.android.com/jetpack/compose/animation/composables-modifiers#enter-exit-transition
https://medium.com/@nitheeshag/navigation-in-jetpack-compose-with-animations-724037d7b119

Try It!

• Add parameters and animations to your routes

Next Steps

• Shared Layouts
• Nested Navigation
• Risk Management

