
420-5A6-AB
Instructor: Talib Hussain

Day 11:
I/O, State and Lists

Application
Development II

Objectives

• I/O with State
• TextField
• "Forms"

• State
• State Sharing
• State Hoisting
• Stateless vs Stateful Components

• Lists
• LazyColumn and LazyRow
• Mutable state with lists

TextField
• TextField is a Material composable for getting textual input from the user

• https://m3.material.io/components/text-fields/overview
• https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#textfield

• To make a good, usable text field, you want to make sure that the field shows the current value typed in by the user and
that the component remembers that value in state.

• It is also good usability to provide a placeholder for the text field before the user enters any information

• The TextField component issues a ValueChange event every time the user changes the information in the test field.

• E.g.,
var name by rememberSaveable { mutableStateOf("") }

TextField(
 value = name,
 onValueChange = { name = it },
 textStyle = TextStyle(textAlign = TextAlign.Center),
 label = { Text(text = "Please enter your name")}
)

• Note: For some reason, my IDE didn't find the import for TextStyle. If you have the same issue, it is:
• import androidx.compose.ui.text.TextStyle

• Material also has an OutlinedTextField

https://m3.material.io/components/text-fields/overview
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#textfield

• If you get errors
using Layout
Inspector, then it
may not be
installed.

• Go to Tools -> SDK
Manager

• Select the SDK Tools
tab

• Check the box next
to Layout Inspector
for API 31-34 and
click OK.

Try It! (State)

• Try the following codelab, up to the end of #8
• https://developer.android.com/codelabs/jetpack-compose-state#1

https://developer.android.com/codelabs/jetpack-compose-state#1

onClickable

• You can turn most components into the equivalent of buttons using
Modifier.

Modifier.clickable(onClick = {count-- },
 onClickLabel = "Decrement count")
• Note: The optional onClickLabel is for accessibility purposes. It does not

actually display on the screen.

Conditional Content

• You can change whether a particular component is displayed or not using a conditional statement

• Combined with a state variable, this lets you toggle visibility when, say, a user clicks a clickable.
• E.g.,

var showImage by remember { mutableStateOf(true) }

Column() {
 …
 if (showImage) {
 Image(…)
 }
 …

 … in another composable:
 onClick = { showImage = !showImage }
}

Form

• We can create a form in our app using several TextFields and a Button to complete/"submit" the
form.

• There are a variety of things we can do here:
• Include logic to check the validity of the values entered in a text field

• E.g., check that a given entry is long enough

• Make the "submit" button appear only once something has been entered in all the text fields
• Simply check the values of all the state variables associated with the text fields to make sure they are non-empty and

"valid"

• Once the submit button is clicked, several things can be done:
• All state values should be appropriately handled.

• At this early stage, we can just put all those values into an object and save it to state.

• The form elements should go away (i.e., gated content) or limited so that the user cannot change the values
• The submit button should be disabled to prevent multiple submissions.
• Perhaps pop-up a message (e.g., using Snack Bar) thanking them for submitting their information

Sample Form
 @Composable
fun MyForm() {
 var nameValue by rememberSaveable { mutableStateOf("") }
 var passwordValue by rememberSaveable { mutableStateOf("") }
 var ageValue by rememberSaveable { mutableStateOf("") }
 var loggedInStatus by rememberSaveable { mutableStateOf(false)}

 Column {
 if (!loggedInStatus) {
 TextField(
 value = nameValue,
 onValueChange = { nameValue = it },
 textStyle = TextStyle(textAlign = TextAlign.Center),
 label = { Text(text = "Please enter your username (Must be non-empty)") }
)
 Spacer(modifier = Modifier.height(20.dp).width(20.dp))
 TextField(
 value = passwordValue,
 onValueChange = { passwordValue = it },
 textStyle = TextStyle(textAlign = TextAlign.Center),
 label = { Text(text = "Please enter your password (Must be at least 8 characters long)") }
)
 Spacer(modifier = Modifier.height(20.dp).width(20.dp))
 TextField(
 value = ageValue,
 onValueChange = { ageValue = it },
 textStyle = TextStyle(textAlign = TextAlign.Center),
 label = { Text(text = "Please enter your age (Must be 18 or older)") }
)

 if (!nameValue.isEmpty() && !passwordValue.isEmpty()
 && passwordValue.length >= 8 && !ageValue.isEmpty()
 && ageValue.toInt() >= 18
) {
 Button(onClick = { loggedInStatus = true }) {
 Text("Signup")
 }
 }
 }
 else {
 Text("Welcome $nameValue. You are $ageValue years old.")
 }
 }

Try It!

• Create appropriate event handling for the onClick of your buttons and Card
from earlier
• Create appropriate state variables
• Convert at least one component into a clickable and add event handling to it.
• Make at least one component display only if a certain Boolean variable is true.
• Toggle that variable in one of your buttons/clickables.

• Capture user textual input using a text field and display that information
elsewhere on the screen
• Generally, play around with adding basic event handling to your screen and

making it behave in a dynamic fashion based on the user's actions.
• Create a dynamic form with at least two text fields.

Some Refactoring

• Now that we have gotten our coding feet wet and figured out some
Compose basics, let's start getting into good coding habits
• We want to be able to break up our components into separate files.
• One simple approach is to have one composable per file
• So, take a few minutes to break out your code into separate files.

Password Entry…

• We really don't want to see the password in the text field…
• Add the following property to TextField:

visualTransformation = PasswordVisualTransformation(),

• We also don't want the keyboard to reveal what has been typed.
• Add the following property to TextField or OutlinedTextField

 keyboardOptions = KeyboardOptions(

 keyboardType = KeyboardType.Password,

 imeAction = ImeAction.Done

),

• Make these changes as part of your refactor (if you had a password request). Otherwise, add a composable with a
TextField that requests a password and use this approach.

• There are a variety of options with regards to the keyboard that
you can explore at the following links:

• https://developer.android.com/reference/kotlin/androidx/compose/foundation/text/KeyboardOptions

• https://developer.android.com/reference/kotlin/androidx/compose/ui/text/input/KeyboardType

TextField(
 value = passwordValue,
 onValueChange = { passwordValue = it },
 textStyle = TextStyle(textAlign = TextAlign.Center),
 label = { Text(text = "Please enter your password") },
 visualTransformation = PasswordVisualTransformation(),
 keyboardOptions = KeyboardOptions(
 keyboardType = KeyboardType.Password,
 imeAction = ImeAction.Done
)
)

https://developer.android.com/reference/kotlin/androidx/compose/foundation/text/KeyboardOptions
https://developer.android.com/reference/kotlin/androidx/compose/ui/text/input/KeyboardType

Sharing State

• Now, we quickly run into an issue
• What if we want to pass state information to a child component and have them change it?

• We need to pass down the value and a callback function to change the value separately.
• This enables the child to call the callback function to make the desired change.

• To pass a function, we usually pass down a lambda function such as:
childComponent(count, setCount = { count = it})

• To accept a function as a parameter, we use this notation
fun childComponent(count: Int, setCount: (Int) -> Unit)

• To pass both the getter and setter from the parent, call:
childComponent(count, setCount = { count = it})

• To accept those parameters in the child, we use this notation
fun childComponent(count: Int, setCount: (Int) -> Unit)

• Inside the child function, we can call the callback (i.e., setCount), and this will cause the state
in the parent to change. That change in turn will lead to a recomposition.

Passing value and setter

• At parent level:

 ImageCard(showImage = showImage, setShowImage = { showImage = it},
 count = count, setCount = { count = it})

• At child level:
fun ImageCard(showImage: Boolean, setShowImage: (Boolean) -> Unit,
 count: Int, setCount: (Int) -> Unit)
 …
 onClick = { setShowImage(!showImage); setCount(count - 1) },
 …
 Text("Clickable ${count} ${showImage}", Modifier.align(Alignment.Center))

State Hoisting

• When writing code with multiple components, it is important to declare the state variable at the highest necessary
point in the component tree.
• i.e., if several components in a branch of the component tree need to use a given variable, then that state variable should be

defined in their shared ancestor (i.e., the root of the branch they are all part of).

• State that is hoisted this way has some important properties:
• https://developer.android.com/jetpack/compose/state#state-hoisting
• Single source of truth: By moving state instead of duplicating it, we're ensuring there's only one source of truth. This helps

avoid bugs.
• Encapsulated: Only stateful composables can modify their state. It's completely internal.
• Shareable: Hoisted state can be shared with multiple composables. If you wanted to read name in a different composable,

hoisting would allow you to do that.
• Interceptable: callers to the stateless composables can decide to ignore or modify events before changing the state.
• Decoupled: the state for the stateless ExpandingCard may be stored anywhere. For example, it's now possible to move name

into a ViewModel.

• https://www.kodeco.com/30172122-managing-state-in-jetpack-compose

https://developer.android.com/jetpack/compose/state#state-hoisting
https://www.kodeco.com/30172122-managing-state-in-jetpack-compose

Stateless vs Stateful Components

• Another good design principle is to create stateless components wherever possible.
• This lets us separate the logic for displaying the data from the source of the data

• We can do this by hoisting state.
• In turn, this lets us

• Re-use the display component for multiple different sources of data.
• "preview" the stateless component

• @preview to preview in Studio, but can't take any parameters
• To be discussed later

• Perform easier testing
• As you develop reusable Composables, you often want to expose both a Stateful and a Stateless

version of the same composable
• This results in pairs of similarly named components. One that holds state and one that doesn't
• One naming technique for a given pair is to use the exact same component name (but parameters will vary).
• Another is to use similar but different names, and be consistent across your components.
• You can also explicitly use the word Stateless or Stateful in the component name for clarity.

• Note: In Flutter, this is the naming approach used.

• Links:
• https://developer.android.com/jetpack/compose/state#stateful-vs-stateless
• https://peterchege.hashnode.dev/stateful-and-stateless-components-in-jetpack-compose

https://developer.android.com/jetpack/compose/state#stateful-vs-stateless
https://peterchege.hashnode.dev/stateful-and-stateless-components-in-jetpack-compose

Example: Stateful vs Stateless
/* Stateful Component */

@Composable

fun HelloScreen() {

 var name by rememberSaveable { mutableStateOf("") }

 HelloContent(name = name, onNameChange = { name = it })

}

/* Stateless Component */

@Composable

fun HelloContent(name: String, onNameChange: (String) -> Unit) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(

 text = "Hello, $name",

 modifier = Modifier.padding(bottom = 8.dp),

 style = MaterialTheme.typography.bodyMedium

)

 OutlinedTextField(value = name, onValueChange = onNameChange, label = { Text("Name") })

 }

}

Read It!

• Read through the following article. It gives a very good set of
examples DOs and DON'Ts related to state in Compose
• https://medium.com/@takahirom/jetpack-compose-state-guideline-494d467

b6e76

https://medium.com/@takahirom/jetpack-compose-state-guideline-494d467b6e76
https://medium.com/@takahirom/jetpack-compose-state-guideline-494d467b6e76

Displaying Lists: LazyColumn and
LazyRow
• If you need to display a large number of items, or a list of unknown length, then using a layout such as Column can result

in performance issues
• ALL of the items will be composed and laid out whether or not they are visible on the device screen
• Note: LazyColumn and LazyRow are equivalent to RecyclerView in Android Views, except entirely new composables are created as the user

scrolls through the list.

• LazyColumn and LazyRow are two components that will only compose and layout those items that are current visible on
the screen.

• They produce a vertical or horizontal scrolling list.
• These two components are a bit different from most other layouts in Compose.
• Inside the braces, instead of specifying Composables directly, you specify a sequence of specific commands to describe the

item contents.
• Technically this is termed a domain-specific language (DSL)

• https://developer.android.com/jetpack/compose/lists
• https://developer.android.com/reference/kotlin/androidx/compose/foundation/lazy/LazyListScope
• https://medium.com/@mal7othify/lists-using-lazycolumn-in-jetpack-compose-c70c39805fbc

https://developer.android.com/jetpack/compose/lists
https://developer.android.com/reference/kotlin/androidx/compose/foundation/lazy/LazyListScope
https://medium.com/@mal7othify/lists-using-lazycolumn-in-jetpack-compose-c70c39805fbc

item() and items()
• The item() function adds a single items to the layout.

• The items(Int) function adds a given number of items to the layout
LazyColumn {
 // Add a single item
 item {
 Text(text = "First item")
 }

 // Add 5 items
 items(5) { index ->
 Text(text = "Item: $index")
 }

 // Add another single item
 item {
 Text(text = "Last item")
 }
}

items(<list>) &
itemsIndexed(<list>)
• A LazyColumn can also accept an existing list

• For example, if myList is a List<String>
LazyColumn {

items(myList) { item ->
 Text(text = item)

 }

}
}

• itemsIndexed can provide access to the item as well as its index.
itemsIndexed(myList) { index, item ->

Text(text = "#$index: $item")
}

• May need to manually import items/itemsIndexed
import androidx.compose.foundation.lazy.items
or
import androidx.compose.foundation.lazy.itemsIndexed

Display list from state
• This example shows use a stateful and stateless component.

• You will need to import androidx.compose.foundation.lazy.items

/* Stateful */

@Composable

fun DisplayList() {

 val idList = remember { List<String>(100) { "Item $it" } }

 DisplayGivenList(idList = idList)

}

/* Stateless */

@Composable

fun DisplayGivenList(idList: List<String>) {

 LazyColumn {

 items(items=idList) { id ->

 Text(text = "" + id)

 }

 }

}

A simple Kotlin List does not have .getValue()
or .setValue() functions, so we can't use
delegation

Pass in function to apply to clicked
item
• Need to import the right thing

import androidx.compose.foundation.lazy.items

@Composable

fun ListContent(onItemClick: (String) -> Unit) {

 val items: List<String> = remember { List(100) { "Item $it" } }

 LazyColumn {

 itemsIndexed(items) { index, item ->

 Text(

 text = "#$index: $item",

 modifier = Modifier

 .clickable { onItemClick(item) }

 .fillMaxWidth()

 .padding(16.dp)

)

 }

 }

}

What about changing the displayed
list?
mutableStateListOf
• So far, we have been creating state variables that an unchanging lists
• But, we may want to add or remove elements to the list as the user uses our app

• You'll need to do this in Assignment #2!
• https://medium.com/geekculture/add-remove-in-lazycolumn-list-aka-recyclerview-jetpack-compose-7c

4a2464fc9f

• To accomplish this, we need to use a mutable state with a List
• There are two ways to accomplish this.

• Call .toMutableStateList() on an existing List object
• Call mutableStateListOf() to create a mutable state with an empty List and then add/remove elements

to your state

• Caution: Using mutable objects such as ArrayList<T> or mutableListOf() as state in Compose
causes your users to see incorrect or stale data in your app.
• Mutable objects that are not observable, such as ArrayList or a mutable data class, are not observable

by Compose and don't trigger a recomposition when they change.
• Instead of using non-observable mutable objects, the recommendation is to use an observable data

holder such as State<List<T>> and the immutable listOf().
• https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp

https://medium.com/geekculture/add-remove-in-lazycolumn-list-aka-recyclerview-jetpack-compose-7c4a2464fc9f
https://medium.com/geekculture/add-remove-in-lazycolumn-list-aka-recyclerview-jetpack-compose-7c4a2464fc9f
https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp

Creating & Using a Mutable State
List
• For example, this creates state with a MutableList that is initially empty

val todoList = remember { mutableStateListOf<String>() }

• These operations allow you to access the list:
items (todoList) { item ->

}
or
itemsIndexed(todoList) { index, item ->

}

• These operations update the list:
• todoList.add("Information to add")
• todoList.remove(item)
• todoList.removeAt(index)

fun ChangingList() {

 val todoList = remember { mutableStateListOf<String>() }

 LazyColumn {

 item() {

 Button(

 onClick = {todoList.add("Do this ${todoList.size}")},

) {

 Text(text = "Add Item")

 }

 }

 itemsIndexed(todoList) { index, item ->

 Text(

 text = "#$index: $item",

 modifier = Modifier

 .clickable { todoList.remove(item) }

 .padding(16.dp)

)

 }

 }

}

• Tricky error using rememberSaveable with a SnapshotStateList…
• https://stackoverflow.com/questions/68885154/using-remembersaveable-with-mutablestatelistof/688

87484#68887484
• Need to create the following function

@Composable
fun <T: Any> rememberMutableStateListOf(vararg elements: T): SnapshotStateList<T> {
 return rememberSaveable(
 saver = listSaver(
 save = { stateList ->
 if (stateList.isNotEmpty()) {
 val first = stateList.first()
 if (!canBeSaved(first)) {
 throw IllegalStateException("${first::class} cannot be saved. By default only types which can
be stored in the Bundle class can be saved.")
 }
 }
 stateList.toList()
 },
 restore = { it.toMutableStateList() }
)
) {
 elements.toList().toMutableStateList()
 }
}

• Then use like:
 val names = rememberMutableStateListOf<String>()

https://stackoverflow.com/questions/68885154/using-remembersaveable-with-mutablestatelistof/68887484#68887484
https://stackoverflow.com/questions/68885154/using-remembersaveable-with-mutablestatelistof/68887484#68887484

Try It!

• Continue working on the following codelab. Complete # 9, 10 & 11
• This shows you how to do a checkbox list
• https://developer.android.com/codelabs/jetpack-compose-state#8

• Optional: This codelab provides additional practice (including
animating a list)
• https://developer.android.com/codelabs/jetpack-compose-basics#8

https://developer.android.com/codelabs/jetpack-compose-state#8
https://developer.android.com/codelabs/jetpack-compose-basics#8

Practice It!

• Complete the following codelab, which challenges you to display a list
using Cards and Material Theming
• https://developer.android.com/codelabs/basic-android-kotlin-compose-practi

ce-superheroes?hl=en#0
• Note: Solution code is provided at the end for reference. But, try to do this

on your own before looking.

• You now know everything you need to do Assignment #2

https://developer.android.com/codelabs/basic-android-kotlin-compose-practice-superheroes?hl=en#0
https://developer.android.com/codelabs/basic-android-kotlin-compose-practice-superheroes?hl=en#0

Misc.

• LazyGrid
• See https://developer.android.com/jetpack/compose/lists

• Advanced form operations
• https://www.section.io/engineering-education/jetpack-compose-forms/

• More on Text Styling
• https://semicolonspace.com/jetpack-compose-text/

• Returning multiple values from functions
• https://www.baeldung.com/kotlin/returning-multiple-values

• Destructuring declarations
• https://www.tutorialspoint.com/kotlin/kotlin_destructuring_declarations.htm

https://developer.android.com/jetpack/compose/lists
https://www.section.io/engineering-education/jetpack-compose-forms/
https://semicolonspace.com/jetpack-compose-text/
https://www.baeldung.com/kotlin/returning-multiple-values
https://www.tutorialspoint.com/kotlin/kotlin_destructuring_declarations.htm

Misc.: Interfaces

• The colon : is used to
indicate "implements an
interface"
• i.e., not just for "extends"

• https://kotlinlang.org/docs/
interfaces.html#implementi
ng-interfaces

https://kotlinlang.org/docs/interfaces.html#implementing-interfaces
https://kotlinlang.org/docs/interfaces.html#implementing-interfaces
https://kotlinlang.org/docs/interfaces.html#implementing-interfaces

Assignment #2: Single Screen,
Interactive Compose App
• Worth 7% of grade. Due Sep 24 by midnight. This is an individual assignment.

• Estimated Level of Effort: 6 hours – 1 hour class time and 5 hours homework.

• For this assignment, you will create a single screen mobile app that runs on an emulated Android, interacts with the user and uses state.

• The topic of the app is of your choice
• Recommendation: Choose a screen/subject that may align with your eventual project. Try to focus on something different than your teammates.

• The app must:
• Be programmed in Kotlin and use Jetpack Compose for the UI

• Use Material design

• Contain multiple components and show good attention to layout

• Show reasonable attention to styling/theming

• Get user input (button and/or text input)

• Update what is on the screen based on user input (using mutableState)

• Display at least one list of information that the user has entered

• Be robust to rotating the device

• The code must be documented internally and contain a Readme file
• The internal documentation should be informative and meaningful (i.e., not vacuous)

• The Readme should give a high-level indication of what the product is and how to use it. If there are any known issues, they should be described/explained in the Readme. The Readme file should live at the root level of
the project.

• Code documentation must include work breakdown structure (WBS), level of effort (LOE) estimates and summary of actual time worked
• Breakdown the assignment into at least 3 distinct subtasks. Make an initial estimate of the time you expect each subtask will take.

• While programming, keep track of how long each subtask actually took you.

• Submit a summary of the subtasks, the initial effort estimates and the actual effort. If the actual was significantly different than the estimate, provide a sentence or two with your thoughts on why the difference occurred
(e.g., task was easier than expected, hit several unexpected bugs, misunderstood what was expected, etc.)

• The code must compile and run.
• If you submit something with compile errors or that shows no meaningful output, a high penalty will be assessed, as appropriate.

• The app should be usable – with clear wording/instructions and understandable, easy-to-use interface

Assignment #2: Single Screen,
Interactive Compose App
• Marking Scheme:

• 40% Functionality
• 20% Styling/Layout
• 20% Documentation (including WBS, LOE estimates and actuals, with explanations as appropriate)
• 20% Usability/Design

• Submission:
• Submit zip file of entire project on Lea.

• Late Penalty:
• Late submissions lose 10% per day to a maximum of 3 days
• Nothing accepted after 3 days without prior arrangement and a grade of zero may be given.
• Strong Recommendation: Submit incomplete version ON TIME with explanation of what is not done. Submit completed version later with explanation of

what changed. This may result in a lower penalty than just submitting late.

• Original work!
• "Your submitted work must be clear, complete, and YOUR OWN. You must be prepared to explain any of your work to me in person. Failure to be able to

defend your work, or do a similar question in front of me in person can/will void any grade you get on this assignment."
• Any code snippets copied or "highly inspired" from a 3rd party source or ChatGPT must be explicitly indicated (with source identified) in the code

documentation or Readme.
• The total amount of such non-original code should be a small portion of your code (rule of thumb is < 20%).
• 3rd party code should not be used for key algorithmic capabilities that this assignment is focused on. They should rather be used for more rote/simple parts of the code.

Credit for that portion of the project may not be given if it is key.
• If excessive 3rd party contributions are used, your grade may be based proportionally only on the portion that is original. (e.g., if 50% is original and that is worth a grade of

80% based on the marking scheme, then a total grade of 40% may be given).
• If in any doubt regarding a 3rd party contribution – ask IN ADVANCE. Ideally in writing so we both have backup if there are any questions later on.

Next

• Navigating Multiple Screens

